Skip to main content

Time-dependent kinetic complexities in cholinesterase-catalyzed reactions

Abstract

Cholinesterases (ChEs) display a hysteretic behavior with certain substrates and inhibitors. Kinetic cooperativity in hysteresis of ChE-catalyzed reactions is characterized by a lag or burst phase in the approach to steady state. With some substrates damped oscillations are shown to superimpose on hysteretic lags. These time dependent peculiarities are observed for both butyrylcholinesterase and acetylcholinesterase from different sources. Hysteresis in ChE-catalyzed reactions can be interpreted in terms of slow transitions between two enzyme conformers E and E′. Substrate can bind to E and/or E′, both Michaelian complexes ES and E’s can be catalytically competent, or only one of them can make products. The formal reaction pathway depends on both the chemical structure of the substrate and the type of enzyme. In particular, damped oscillations develop when substrate exists in different, slowly interconvertible, conformational, and/or micellar forms, of which only the minor form is capable of binding and reacting with the enzyme. Biphasic pseudo-first-order progressive inhibition of ChEs by certain carbamates and organophosphates also fits with a slow equilibrium between two reactive enzyme forms. Hysteresis can be modulated by medium parameters (pH, chaotropic and kosmotropic salts, organic solvents, temperature, osmotic pressure, and hydrostatic pressure). These studies showed that water structure plays a role in hysteretic behavior of ChEs. Attempts to provide a molecular mechanism for ChE hysteresis from mutagenesis studies or crystallographic studies failed so far. In fact, several lines of evidence suggest that hysteresis is controlled by the conformation of His438, a key residue in the catalytic triad of cholinesterases. Induction time may depend on the probability of His438 to adopt the operative conformation in the catalytic triad. The functional significance of ChE hysteresis is puzzling. However, the accepted view that proteins are in equilibrium between preexisting functional and non-functional conformers, and that binding of a ligand to the functional form shifts equilibrium towards the functional conformation, suggests that slow equilibrium between two conformational states of these enzymes may have a regulatory function in damping out the response to certain ligands and irreversible inhibitors. This is particularly true for immobilized (membrane bound) enzymes where the local substrate and/or inhibitor concentrations depend on influx in crowded organellar systems, e.g. cholinergic synaptic clefts. Therefore, physiological or toxicological relevance of the hysteretic behavior and damped oscillations in ChE-catalyzed reactions and inhibition cannot be ruled out.

This is a preview of subscription content, access via your institution.

Abbreviations

AAA:

aryl-acylamidase

AChE:

acetylcholinesterase

ASCh:

acetylthiocholine

ATMA:

3-(acetamido) N,N,N-trimethylanilinium

BSA:

bovine serum albumin

BuCh:

butyrylcholine

BuChE:

butyrylcholinesterase

BuSCh:

butyrylthiocholine

BzCh:

benzoylcholine

BzSCh:

benzoylthiocholine

CBDP:

cresyl saligenin phosphate

ChE:

cholinesterase

MNPCC:

N-methyl-N-(2-nitrophenyl) carbamoyl chloride

NMIA:

N-methylindoxyl acetate

OP:

organophosphate

PAS:

peripheral anionic site

References

  1. Massoulie, J., Pezzementi, L., Bon, S., Krejci, E., and Vallette, F. M. (1993) Prog. Neurobiol., 41, 31–91.

    PubMed  CAS  Google Scholar 

  2. Taylor, P., and Radic, Z. (1994) Ann. Rev. Pharmacol. Toxicol., 34, 281–320.

    CAS  Google Scholar 

  3. Massoulie, J., Perrier, N., Noureddine, H., Liang, D., and Bon, S. (2008) Chem.-Biol. Interact., 175, 30–44.

    PubMed  CAS  Google Scholar 

  4. Masson, P., and Lockridge, O. (2010) Arch. Biochem. Biophys., 494, 107–120.

    PubMed  CAS  Google Scholar 

  5. Rosenberry, T. L. (1975) Adv. Enzymol., 43, 103–218.

    PubMed  CAS  Google Scholar 

  6. Quinn, D. M. (1987) Chem. Rev., 87, 955–979.

    CAS  Google Scholar 

  7. Tougu, V. (2001) Curr. Med. Chem., 1, 155–170.

    CAS  Google Scholar 

  8. Silman, I., and Sussman, J. L. (2008) Chem.-Biol. Interact., 175, 3–10.

    PubMed  CAS  Google Scholar 

  9. Dvir, H., Silman, I., Harel, M., Rosenberry, T. L., and Sussman, J. L. (2010) Chem.-Biol. Interact., 187, 10–22.

    PubMed  CAS  Google Scholar 

  10. Masson, P., Froment, M. T., Fort, S., Ribes, F., Bec, N., Balny, C., and Schopfer, L. M. (2002) Biochim. Biophys. Acta, 1597, 229–243.

    PubMed  CAS  Google Scholar 

  11. Badiou, A., Froment, M. T., Fournier, D., Masson, P., and Belzunces, L. P. (2008) Chem.-Biol. Interact., 175, 410–412.

    PubMed  CAS  Google Scholar 

  12. Masson, P., Froment, M. T., Gillon, E., Nachon, F., Darvesh, S., and Schopfer, L. M. (2007) Biochim. Biophys. Acta, 1774, 1139–1147.

    PubMed  CAS  Google Scholar 

  13. Frieden, C. (1979) Ann. Rev. Biochem., 48, 471–489.

    PubMed  CAS  Google Scholar 

  14. Neet, K. E., and Ainslie, R. G. (1980) Meth. Enzymol., 64, 192–226.

    PubMed  CAS  Google Scholar 

  15. Kurganov, B. I., Dorozhko, A. I., Kagan, Z. S., and Yakovlev, V. A. (1976) J. Theor. Biol., 60, 247–269.

    PubMed  CAS  Google Scholar 

  16. Masson, P., Froment, M. T., Nachon, F., Lockridge, O., and Schopfer, L. M. (2004) in Cholinesterases in the Second Millenium: Biomolecular and Pathological Aspects (Inestrosa, N. C., and Campos, E. O., eds.) FONDAP Biomedicine, Santiago, Chile, pp. 191–199.

    Google Scholar 

  17. Masson, P., Goldstein, B. N., Debouzy, J.-C., Froment, M.-T., Lockridge, O., and Schopfer, L. M. (2004) Eur. J. Biochem., 271, 220–234.

    PubMed  CAS  Google Scholar 

  18. Hrabovska, A., Debouzy, J.-C., Froment, M.-T., Devinsky, Pavlikova, I., and Masson, P. (2006) FEBS J., 273, 1185–1197.

    PubMed  CAS  Google Scholar 

  19. Ludwig, S., Nicolet, Y., Masson, P., Fontecilla-Camps, J. C., Bon, S., Nachon, F., and Goeldner, M. (2003) ChemBioChem., 4, 762–767.

    Google Scholar 

  20. Carletti, E., Schopfer, L. M., Colletier, J. P., Froment, M.-T., Nachon, F., Weik, M., Lockridge, O., and Masson, P. (2011) Chem. Res. Toxicol., 24, 797–808.

    PubMed  CAS  Google Scholar 

  21. Masson, P., Legrand, P., Bartels, C. F., Froment, M.-T., Schopfer, L. M., and Lockridge, O. (1997) Biochemistry, 36, 2266–2277.

    PubMed  CAS  Google Scholar 

  22. Grigoryan, H., Halebyan, G., Lefebvre, B., Brasme, B., and Masson, P. (2008) Biochim. Biophys. Acta, 1784, 1818–1824.

    PubMed  CAS  Google Scholar 

  23. Ticu Boeck, A., Schopfer, L. M., and Lockridge, O. (2002) Biochem. Pharmacol., 63, 2101–2110.

    Google Scholar 

  24. Badiou, A., Brunet, J. L., and Belzunces, L. P. (2007) Arch. Insect. Biochem. Physiol., 66, 122–134.

    PubMed  CAS  Google Scholar 

  25. Estrada-Mondaca, S., and Fournier, D. (1998) Prot. Expr. Purif., 12, 166–172.

    CAS  Google Scholar 

  26. Cousin, X., Creminon, C., Grassi, J., Meflah, N., Cornu, G., Saliou, B., Bon, S., Massoulie, J., and Bon, C. (1996) FEBS Lett., 387, 196–200.

    PubMed  CAS  Google Scholar 

  27. Poyot, T., Nachon, F., Froment, M.-T., Loiodice, M., Wieseler, S., Schopfer, L. M., Lockridge, O., and Masson, P. (2006) Biochim. Biophys. Acta, 1764, 1470–1478.

    PubMed  CAS  Google Scholar 

  28. Aldridge, W. N., and Reiner, E. (1969) Biochem. J., 115, 147–162.

    PubMed  CAS  Google Scholar 

  29. Loudon, G. M., and Koshland, D. E. (1971) Biochemistry, 11, 229–241.

    Google Scholar 

  30. Masson, P., Schopfer, L. M., Froment, M. T., Debouzy, J. C., Nachon, F., Gillon, E., Lockridge, O., Hrabovska, A., and Goldstein, B. N. (2005) Chem.-Biol. Interact., 157/158, 143–152.

    Google Scholar 

  31. Cheron, G., Noat, G., and Ricard, J. (1990) Biochem. J., 269, 389–392.

    PubMed  CAS  Google Scholar 

  32. Hess, B., and Boiteux, A. (1971) Ann. Rev. Biochem., 40, 237–258.

    PubMed  CAS  Google Scholar 

  33. Ouellet, L., and Laidler, K. J. (1956) Can. J. Chem., 34, 146–150.

    Google Scholar 

  34. Strickland, E. H., and Ackerman, E. (1966) Nature, 209, 405–406.

    PubMed  CAS  Google Scholar 

  35. Goldstein, B. N. (1983) J. Theor. Biol., 103, 247–264.

    PubMed  CAS  Google Scholar 

  36. Roussel, M. R. (1998) J. Theor. Biol., 195, 233–244.

    PubMed  CAS  Google Scholar 

  37. Davis, K. L., and Roussel, M. (2005) FEBS J., 273, 84–95.

    Google Scholar 

  38. Goldstein, B. N., Aksirov, A. M., and Zakrjevskaya, D. T. (2007) Biofizika, 52, 515–520.

    CAS  Google Scholar 

  39. Goldstein, B. (2007) Biophys. Chem., 125, 314–319.

    PubMed  CAS  Google Scholar 

  40. Goldstein, B. N., Aksirov, A. M., and Zakrjevskaya, D. T. (2009) Biophys. Chem., 145, 111–115.

    PubMed  CAS  Google Scholar 

  41. Vistoli, G., Pedretti, A., Villa, L., and Testa, B. (2002) J. Am. Chem. Soc., 124, 7472–7480.

    PubMed  CAS  Google Scholar 

  42. Baldwin, J., and Hochachka, P. W. (1970) Biochem. J., 116, 883–887.

    PubMed  CAS  Google Scholar 

  43. Wang, I.-C., and Braid, P. E. (1977) Biochim. Biophys. Acta, 481, 515–525.

    PubMed  CAS  Google Scholar 

  44. Dave, K. R., Syal, A. R., and Katyare, S. S. (2000) Z. Naturforsch., 55c, 100–108.

    Google Scholar 

  45. Talsky, G. (1971) Angew. Chem. Int. Edit., 8, 434–548.

    Google Scholar 

  46. Kubo, K. (1985) J. Theor. Biol., 115, 551–569.

    Google Scholar 

  47. Londesborough, J. (1980) Eur. J. Biochem., 105, 211–215.

    PubMed  CAS  Google Scholar 

  48. Bobofchak, K. M., Pineda, A. O., Mathews, F. S., and Di Cera, E. (2005) J. Biol. Chem., 280, 25644–25650.

    PubMed  CAS  Google Scholar 

  49. Fan, Y.-X., McPhie, P., and Miles, E. W. (2000) Biochemistry, 39, 4692–4703.

    PubMed  CAS  Google Scholar 

  50. Kayne, F. J., and Suelter, C. H. (1965) Biochemistry, 87, 897–900.

    CAS  Google Scholar 

  51. Massey, V., Curti, B., and Ganther, H. (1966) J. Biol. Chem., 241, 2347–2357.

    PubMed  CAS  Google Scholar 

  52. Truhlar, D. G., and Kohen, A. (2001) Proc. Natl. Acad. Sci. USA, 98, 848–851.

    PubMed  CAS  Google Scholar 

  53. Wilson, I. B., and Cabib, E. (1956) J. Am. Chem. Soc., 78, 202–207.

    CAS  Google Scholar 

  54. Oakes, J., Nguyen, T., and Britt, M. B. (2003) Prot. Pept. Lett., 10, 321–324.

    CAS  Google Scholar 

  55. Plummer, D. T., Reavill, C. A., and McIntosh, H. C. H. S. (1975) Croat. Chem. Acta, 47, 211–233.

    CAS  Google Scholar 

  56. Roufogalis, B. D., and Beauregard, G. (1979) Mol. Pharmacol., 16, 189–195.

    PubMed  CAS  Google Scholar 

  57. Nemat-Gorgani, M., and Meisami, E. (1979) J. Neurochem., 32, 1027–1032.

    PubMed  CAS  Google Scholar 

  58. Tsakiris, S. (1985) Z. Naturforsch., 40c, 97–101.

    CAS  Google Scholar 

  59. Munoz-Delgado, E., and Vidal, C. J. (1986) Biochem. Int., 12, 291–302.

    PubMed  CAS  Google Scholar 

  60. Wong, R. K. M., Nichol, C. P., Sekar, M. C., and Roufogalis, B. D. (1987) Biochem. Cell. Biol., 65, 8–18.

    PubMed  CAS  Google Scholar 

  61. Puterman, M. L., Hrboticky, N., and Innis, M. (1988) Anal. Biochem., 170, 409–420.

    PubMed  CAS  Google Scholar 

  62. Barton, P. L., Futerman, A. H., and Silman, I. (1985) Biochem. J., 231, 237–240.

    PubMed  CAS  Google Scholar 

  63. Vidal, C. J., Chai, M. S. Y., and Plummer, D. T. (1987) Neurochem. Int., 11, 135–141.

    PubMed  CAS  Google Scholar 

  64. Spinedi, A., Rufini, S., Luly, P., and Farias, R. N. (1988) Biochem. J., 255, 547–551.

    PubMed  CAS  Google Scholar 

  65. Axelson, S., Yong, H. X., and Karlsson, E. (1990) J. Vet. Med. B., 37, 668–673.

    Google Scholar 

  66. Sindhuphak, R., Karlsson, E., Conradi, S., and Ronnevi, L.-O. (2002) J. Neurol. Sci., 86, 195–202.

    Google Scholar 

  67. Al-Jafari, A. (1992) Drug. Chem. Toxicol., 15, 295–312.

    PubMed  CAS  Google Scholar 

  68. Roufogalis, B. D., Quist, E. E., and Wickson, V. M. (1973) Biochim. Biophys. Acta, 321, 536–545.

    PubMed  CAS  Google Scholar 

  69. Masson, P., Adkins, S., Gouet, P., and Lockridge, O. (1993) J. Biol. Chem., 268, 14329–14341.

    PubMed  CAS  Google Scholar 

  70. Masson, P., and Laurentie, M. (1988) Biochim. Biophys. Acta, 957, 111–121.

    PubMed  CAS  Google Scholar 

  71. Weingand-Ziade, A., Ribes, F., Renault, F., and Masson, P. (2001) Biochem. J., 356, 487–493.

    PubMed  CAS  Google Scholar 

  72. Masson, P., Privat de Garilhe, A., and Burnat, P. (1982) Biochim. Biophys. Acta, 701, 269–284.

    PubMed  CAS  Google Scholar 

  73. Masson, P. (1991) Cell. Mol. Neurobiol., 11, 173–189.

    PubMed  CAS  Google Scholar 

  74. Duggleby, R. G., Attwood, P. V., Wallace, J. C., and Keech, D. B. (1982) Biochemistry, 21, 3364–3370.

    PubMed  CAS  Google Scholar 

  75. Morrison, J. F., and Stone, S. R. (1985) Comments Mol. Cell. Biophys., 2, 347–368.

    CAS  Google Scholar 

  76. Ashani, Y., Grunwald, J., Kronmman, C., Velan, B., and Shafferman, A. (1994) Mol. Pharmacol., 45, 555–560.

    PubMed  CAS  Google Scholar 

  77. Stojan, J., and Pavlic, M. R. (1991) Biochim. Biophys. Acta, 1079, 96–102.

    PubMed  CAS  Google Scholar 

  78. Poyot, T., Nachon, F., Froment, M.-T., Loiodice, M., Wieseler, S., Schopfer, L. M., Lockridge, O., and Masson, P. (2006) Biochim. Biophys. Acta, 1764, 1470–1478.

    PubMed  CAS  Google Scholar 

  79. Easterman, J., Wilson, E. J., Cervenansky, C., and Rosenberry, T. L. (1995) J. Biol. Chem., 270, 19694–19701.

    Google Scholar 

  80. Radic, Z., and Taylor, P. (2001) J. Biol. Chem., 276, 4622–4633.

    PubMed  CAS  Google Scholar 

  81. Golicnik, M., and Stojan, J. (2002) Biochim. Biophys. Acta, 1597, 164–172.

    PubMed  CAS  Google Scholar 

  82. Perola, E., Cellai, L., Lamba, D., Filocamo, L., and Brufani, M. (1997) Biochim. Biophys. Acta, 1343, 41–50.

    PubMed  CAS  Google Scholar 

  83. Rosenfeld, C. A., and Sultatos, L. G. (2006) Toxicol. Sci., 90, 460–469.

    PubMed  CAS  Google Scholar 

  84. Shenouda, J., Green, P., and Sultatos, L. (2009) Toxicol. Appl. Pharmacol., 241, 135–142.

    PubMed  CAS  Google Scholar 

  85. Carletti, E., Colletier, J.-P., Dupeux, F., Trovaslet, M., Masson, P., and Nachon, F. (2010) J. Med. Chem., 53, 4002–4008.

    PubMed  CAS  Google Scholar 

  86. Peters, J., Trapp, M., Hill, F., Royer, E., Gabel, F., Trovaslet, M., Nachon, F., van Eijck, L., Masson, P., and Tehei, M. (2012) Phys. Chem. Chem. Phys., 14, 6764–6770.

    CAS  Google Scholar 

  87. Masson, P., Froment, M. T., Gillon, E., Nachon, F., Lockridge, O., and Schopfer, L. M. (2007) Biochim. Biophys. Acta, 1774, 16–34.

    PubMed  CAS  Google Scholar 

  88. Neet, K. E., and Ainslie, G. G. (1980) Meth. Enzymol., 64, 192–227.

    PubMed  CAS  Google Scholar 

  89. Icimoto, M. Y., Barros, N. M., Ferreira, J. C., Marcondes, M. F., Andrade, D., Machado, M. F., Juliano, M. A., Judice, W. A., Juliano, L., and Oliveira, V. (2011) PlosOne, 6, e24545 (1–7).

    Google Scholar 

  90. Atkins, W., and Qian, H. (2011) Biochemistry, 50, 3866–3872.

    PubMed  CAS  Google Scholar 

  91. James, L. C., and Tawfik, D. S. (2003) Trends Biochem. Sci., 28, 361–368.

    PubMed  CAS  Google Scholar 

  92. Kim, Y., Kalinowski, S. S., and Marcinkeviciene, J. (2007) Biochemistry, 46, 1423–1431.

    PubMed  CAS  Google Scholar 

  93. Xu, Y., Colletier, J. Ph., Jiang, H., Silman, I., Sussman, J. L., and Weik, M. (2008) Prot. Sci., 17, 601–605.

    CAS  Google Scholar 

  94. Ramanathan, A., Savol, A. J., Langmead, C., Agarwal, P. K., and Chennubotla, C. S. (2011) PlosOne, 6, e15827 (116).

    Google Scholar 

  95. English, B. P., Min, W., van Oijen, A. M., Lee, K. T., Luo, G., Sun, H., Cherayil, B., Kou, S. C., and Xie, X. S. (2006) Nature Chem. Biol., 2, 87–94.

    CAS  Google Scholar 

  96. Benkovic, S. J., Hammes, G. G., and Hammes-Schiffer, S. (2008) Biochemistry, 47, 3317–3321.

    PubMed  CAS  Google Scholar 

  97. Hauser, M. J. B., Kummer, U., Larse, A. Z., and Olsen, L. F. (2001) Faraday Discuss., 120, 215–227.

    PubMed  CAS  Google Scholar 

  98. Olsen, L. F., Hauser, M. J. B., and Kummer, U. (2003) Eur. J. Biochem., 270, 2796–2804.

    PubMed  CAS  Google Scholar 

  99. Shen, P., and Larter, R. (1994) Biophys. J., 67, 1414–1428.

    PubMed  CAS  Google Scholar 

  100. Bayramov, Sh. K. (2002) Fizika, 8, 6–9.

    Google Scholar 

  101. Friboulet, A., and Thomas, D. (1982) Biophys. Chem., 16, 153–157.

    PubMed  CAS  Google Scholar 

  102. Malik, F., and Stefuca, V. (2002) Chem. Pap., 56, 406–411.

    CAS  Google Scholar 

  103. Ngo, L. G., and Roussel, M. R. (1997) Eur. J. Biochem., 245, 182–190.

    PubMed  CAS  Google Scholar 

  104. Anglister, L., Eichler, J., Szabo, M., Haesaert, B., and Salpeter, M. M. (1998) J. Neurosci. Meth., 81, 63–71.

    CAS  Google Scholar 

  105. Maguire, R. J., Hijazi, N. H., and Laidler, K. J. (1974) Biochim. Biophys. Acta, 341, 1–14.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Masson.

Additional information

Published in Russian in Biokhimiya, 2012, Vol. 77, No. 10, pp. 1383–1400.

In memory of Boris N. Goldstein (1943–2011). Boris N. Goldstein was not only a distinguished scientist who applied the graph theory to formal enzyme kinetics, he was also a fabulous palindrome creator (B. N. Goldstein, Palindromes, Foton-vek, Pushchino, 2009, 112 p.). In homage to Boris, I would like to show French avatar of the famous Latin palindrome, known as the Sator square, initially found in the ruins of Pompeii (see color insert). The picture is an example of this magic square as inserted in a house door of the old Grenoble, France.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Masson, P. Time-dependent kinetic complexities in cholinesterase-catalyzed reactions. Biochemistry Moscow 77, 1147–1161 (2012). https://doi.org/10.1134/S0006297912100070

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297912100070

Key words

  • cholinesterase
  • pre-steady state
  • hysteresis
  • time-dependent
  • preexisting slow equilibrium
  • enzyme conformer
  • damped oscillations
  • inhibition