Abstract
Cholinesterases (ChEs) display a hysteretic behavior with certain substrates and inhibitors. Kinetic cooperativity in hysteresis of ChE-catalyzed reactions is characterized by a lag or burst phase in the approach to steady state. With some substrates damped oscillations are shown to superimpose on hysteretic lags. These time dependent peculiarities are observed for both butyrylcholinesterase and acetylcholinesterase from different sources. Hysteresis in ChE-catalyzed reactions can be interpreted in terms of slow transitions between two enzyme conformers E and E′. Substrate can bind to E and/or E′, both Michaelian complexes ES and E’s can be catalytically competent, or only one of them can make products. The formal reaction pathway depends on both the chemical structure of the substrate and the type of enzyme. In particular, damped oscillations develop when substrate exists in different, slowly interconvertible, conformational, and/or micellar forms, of which only the minor form is capable of binding and reacting with the enzyme. Biphasic pseudo-first-order progressive inhibition of ChEs by certain carbamates and organophosphates also fits with a slow equilibrium between two reactive enzyme forms. Hysteresis can be modulated by medium parameters (pH, chaotropic and kosmotropic salts, organic solvents, temperature, osmotic pressure, and hydrostatic pressure). These studies showed that water structure plays a role in hysteretic behavior of ChEs. Attempts to provide a molecular mechanism for ChE hysteresis from mutagenesis studies or crystallographic studies failed so far. In fact, several lines of evidence suggest that hysteresis is controlled by the conformation of His438, a key residue in the catalytic triad of cholinesterases. Induction time may depend on the probability of His438 to adopt the operative conformation in the catalytic triad. The functional significance of ChE hysteresis is puzzling. However, the accepted view that proteins are in equilibrium between preexisting functional and non-functional conformers, and that binding of a ligand to the functional form shifts equilibrium towards the functional conformation, suggests that slow equilibrium between two conformational states of these enzymes may have a regulatory function in damping out the response to certain ligands and irreversible inhibitors. This is particularly true for immobilized (membrane bound) enzymes where the local substrate and/or inhibitor concentrations depend on influx in crowded organellar systems, e.g. cholinergic synaptic clefts. Therefore, physiological or toxicological relevance of the hysteretic behavior and damped oscillations in ChE-catalyzed reactions and inhibition cannot be ruled out.
This is a preview of subscription content, access via your institution.
Abbreviations
- AAA:
-
aryl-acylamidase
- AChE:
-
acetylcholinesterase
- ASCh:
-
acetylthiocholine
- ATMA:
-
3-(acetamido) N,N,N-trimethylanilinium
- BSA:
-
bovine serum albumin
- BuCh:
-
butyrylcholine
- BuChE:
-
butyrylcholinesterase
- BuSCh:
-
butyrylthiocholine
- BzCh:
-
benzoylcholine
- BzSCh:
-
benzoylthiocholine
- CBDP:
-
cresyl saligenin phosphate
- ChE:
-
cholinesterase
- MNPCC:
-
N-methyl-N-(2-nitrophenyl) carbamoyl chloride
- NMIA:
-
N-methylindoxyl acetate
- OP:
-
organophosphate
- PAS:
-
peripheral anionic site
References
Massoulie, J., Pezzementi, L., Bon, S., Krejci, E., and Vallette, F. M. (1993) Prog. Neurobiol., 41, 31–91.
Taylor, P., and Radic, Z. (1994) Ann. Rev. Pharmacol. Toxicol., 34, 281–320.
Massoulie, J., Perrier, N., Noureddine, H., Liang, D., and Bon, S. (2008) Chem.-Biol. Interact., 175, 30–44.
Masson, P., and Lockridge, O. (2010) Arch. Biochem. Biophys., 494, 107–120.
Rosenberry, T. L. (1975) Adv. Enzymol., 43, 103–218.
Quinn, D. M. (1987) Chem. Rev., 87, 955–979.
Tougu, V. (2001) Curr. Med. Chem., 1, 155–170.
Silman, I., and Sussman, J. L. (2008) Chem.-Biol. Interact., 175, 3–10.
Dvir, H., Silman, I., Harel, M., Rosenberry, T. L., and Sussman, J. L. (2010) Chem.-Biol. Interact., 187, 10–22.
Masson, P., Froment, M. T., Fort, S., Ribes, F., Bec, N., Balny, C., and Schopfer, L. M. (2002) Biochim. Biophys. Acta, 1597, 229–243.
Badiou, A., Froment, M. T., Fournier, D., Masson, P., and Belzunces, L. P. (2008) Chem.-Biol. Interact., 175, 410–412.
Masson, P., Froment, M. T., Gillon, E., Nachon, F., Darvesh, S., and Schopfer, L. M. (2007) Biochim. Biophys. Acta, 1774, 1139–1147.
Frieden, C. (1979) Ann. Rev. Biochem., 48, 471–489.
Neet, K. E., and Ainslie, R. G. (1980) Meth. Enzymol., 64, 192–226.
Kurganov, B. I., Dorozhko, A. I., Kagan, Z. S., and Yakovlev, V. A. (1976) J. Theor. Biol., 60, 247–269.
Masson, P., Froment, M. T., Nachon, F., Lockridge, O., and Schopfer, L. M. (2004) in Cholinesterases in the Second Millenium: Biomolecular and Pathological Aspects (Inestrosa, N. C., and Campos, E. O., eds.) FONDAP Biomedicine, Santiago, Chile, pp. 191–199.
Masson, P., Goldstein, B. N., Debouzy, J.-C., Froment, M.-T., Lockridge, O., and Schopfer, L. M. (2004) Eur. J. Biochem., 271, 220–234.
Hrabovska, A., Debouzy, J.-C., Froment, M.-T., Devinsky, Pavlikova, I., and Masson, P. (2006) FEBS J., 273, 1185–1197.
Ludwig, S., Nicolet, Y., Masson, P., Fontecilla-Camps, J. C., Bon, S., Nachon, F., and Goeldner, M. (2003) ChemBioChem., 4, 762–767.
Carletti, E., Schopfer, L. M., Colletier, J. P., Froment, M.-T., Nachon, F., Weik, M., Lockridge, O., and Masson, P. (2011) Chem. Res. Toxicol., 24, 797–808.
Masson, P., Legrand, P., Bartels, C. F., Froment, M.-T., Schopfer, L. M., and Lockridge, O. (1997) Biochemistry, 36, 2266–2277.
Grigoryan, H., Halebyan, G., Lefebvre, B., Brasme, B., and Masson, P. (2008) Biochim. Biophys. Acta, 1784, 1818–1824.
Ticu Boeck, A., Schopfer, L. M., and Lockridge, O. (2002) Biochem. Pharmacol., 63, 2101–2110.
Badiou, A., Brunet, J. L., and Belzunces, L. P. (2007) Arch. Insect. Biochem. Physiol., 66, 122–134.
Estrada-Mondaca, S., and Fournier, D. (1998) Prot. Expr. Purif., 12, 166–172.
Cousin, X., Creminon, C., Grassi, J., Meflah, N., Cornu, G., Saliou, B., Bon, S., Massoulie, J., and Bon, C. (1996) FEBS Lett., 387, 196–200.
Poyot, T., Nachon, F., Froment, M.-T., Loiodice, M., Wieseler, S., Schopfer, L. M., Lockridge, O., and Masson, P. (2006) Biochim. Biophys. Acta, 1764, 1470–1478.
Aldridge, W. N., and Reiner, E. (1969) Biochem. J., 115, 147–162.
Loudon, G. M., and Koshland, D. E. (1971) Biochemistry, 11, 229–241.
Masson, P., Schopfer, L. M., Froment, M. T., Debouzy, J. C., Nachon, F., Gillon, E., Lockridge, O., Hrabovska, A., and Goldstein, B. N. (2005) Chem.-Biol. Interact., 157/158, 143–152.
Cheron, G., Noat, G., and Ricard, J. (1990) Biochem. J., 269, 389–392.
Hess, B., and Boiteux, A. (1971) Ann. Rev. Biochem., 40, 237–258.
Ouellet, L., and Laidler, K. J. (1956) Can. J. Chem., 34, 146–150.
Strickland, E. H., and Ackerman, E. (1966) Nature, 209, 405–406.
Goldstein, B. N. (1983) J. Theor. Biol., 103, 247–264.
Roussel, M. R. (1998) J. Theor. Biol., 195, 233–244.
Davis, K. L., and Roussel, M. (2005) FEBS J., 273, 84–95.
Goldstein, B. N., Aksirov, A. M., and Zakrjevskaya, D. T. (2007) Biofizika, 52, 515–520.
Goldstein, B. (2007) Biophys. Chem., 125, 314–319.
Goldstein, B. N., Aksirov, A. M., and Zakrjevskaya, D. T. (2009) Biophys. Chem., 145, 111–115.
Vistoli, G., Pedretti, A., Villa, L., and Testa, B. (2002) J. Am. Chem. Soc., 124, 7472–7480.
Baldwin, J., and Hochachka, P. W. (1970) Biochem. J., 116, 883–887.
Wang, I.-C., and Braid, P. E. (1977) Biochim. Biophys. Acta, 481, 515–525.
Dave, K. R., Syal, A. R., and Katyare, S. S. (2000) Z. Naturforsch., 55c, 100–108.
Talsky, G. (1971) Angew. Chem. Int. Edit., 8, 434–548.
Kubo, K. (1985) J. Theor. Biol., 115, 551–569.
Londesborough, J. (1980) Eur. J. Biochem., 105, 211–215.
Bobofchak, K. M., Pineda, A. O., Mathews, F. S., and Di Cera, E. (2005) J. Biol. Chem., 280, 25644–25650.
Fan, Y.-X., McPhie, P., and Miles, E. W. (2000) Biochemistry, 39, 4692–4703.
Kayne, F. J., and Suelter, C. H. (1965) Biochemistry, 87, 897–900.
Massey, V., Curti, B., and Ganther, H. (1966) J. Biol. Chem., 241, 2347–2357.
Truhlar, D. G., and Kohen, A. (2001) Proc. Natl. Acad. Sci. USA, 98, 848–851.
Wilson, I. B., and Cabib, E. (1956) J. Am. Chem. Soc., 78, 202–207.
Oakes, J., Nguyen, T., and Britt, M. B. (2003) Prot. Pept. Lett., 10, 321–324.
Plummer, D. T., Reavill, C. A., and McIntosh, H. C. H. S. (1975) Croat. Chem. Acta, 47, 211–233.
Roufogalis, B. D., and Beauregard, G. (1979) Mol. Pharmacol., 16, 189–195.
Nemat-Gorgani, M., and Meisami, E. (1979) J. Neurochem., 32, 1027–1032.
Tsakiris, S. (1985) Z. Naturforsch., 40c, 97–101.
Munoz-Delgado, E., and Vidal, C. J. (1986) Biochem. Int., 12, 291–302.
Wong, R. K. M., Nichol, C. P., Sekar, M. C., and Roufogalis, B. D. (1987) Biochem. Cell. Biol., 65, 8–18.
Puterman, M. L., Hrboticky, N., and Innis, M. (1988) Anal. Biochem., 170, 409–420.
Barton, P. L., Futerman, A. H., and Silman, I. (1985) Biochem. J., 231, 237–240.
Vidal, C. J., Chai, M. S. Y., and Plummer, D. T. (1987) Neurochem. Int., 11, 135–141.
Spinedi, A., Rufini, S., Luly, P., and Farias, R. N. (1988) Biochem. J., 255, 547–551.
Axelson, S., Yong, H. X., and Karlsson, E. (1990) J. Vet. Med. B., 37, 668–673.
Sindhuphak, R., Karlsson, E., Conradi, S., and Ronnevi, L.-O. (2002) J. Neurol. Sci., 86, 195–202.
Al-Jafari, A. (1992) Drug. Chem. Toxicol., 15, 295–312.
Roufogalis, B. D., Quist, E. E., and Wickson, V. M. (1973) Biochim. Biophys. Acta, 321, 536–545.
Masson, P., Adkins, S., Gouet, P., and Lockridge, O. (1993) J. Biol. Chem., 268, 14329–14341.
Masson, P., and Laurentie, M. (1988) Biochim. Biophys. Acta, 957, 111–121.
Weingand-Ziade, A., Ribes, F., Renault, F., and Masson, P. (2001) Biochem. J., 356, 487–493.
Masson, P., Privat de Garilhe, A., and Burnat, P. (1982) Biochim. Biophys. Acta, 701, 269–284.
Masson, P. (1991) Cell. Mol. Neurobiol., 11, 173–189.
Duggleby, R. G., Attwood, P. V., Wallace, J. C., and Keech, D. B. (1982) Biochemistry, 21, 3364–3370.
Morrison, J. F., and Stone, S. R. (1985) Comments Mol. Cell. Biophys., 2, 347–368.
Ashani, Y., Grunwald, J., Kronmman, C., Velan, B., and Shafferman, A. (1994) Mol. Pharmacol., 45, 555–560.
Stojan, J., and Pavlic, M. R. (1991) Biochim. Biophys. Acta, 1079, 96–102.
Poyot, T., Nachon, F., Froment, M.-T., Loiodice, M., Wieseler, S., Schopfer, L. M., Lockridge, O., and Masson, P. (2006) Biochim. Biophys. Acta, 1764, 1470–1478.
Easterman, J., Wilson, E. J., Cervenansky, C., and Rosenberry, T. L. (1995) J. Biol. Chem., 270, 19694–19701.
Radic, Z., and Taylor, P. (2001) J. Biol. Chem., 276, 4622–4633.
Golicnik, M., and Stojan, J. (2002) Biochim. Biophys. Acta, 1597, 164–172.
Perola, E., Cellai, L., Lamba, D., Filocamo, L., and Brufani, M. (1997) Biochim. Biophys. Acta, 1343, 41–50.
Rosenfeld, C. A., and Sultatos, L. G. (2006) Toxicol. Sci., 90, 460–469.
Shenouda, J., Green, P., and Sultatos, L. (2009) Toxicol. Appl. Pharmacol., 241, 135–142.
Carletti, E., Colletier, J.-P., Dupeux, F., Trovaslet, M., Masson, P., and Nachon, F. (2010) J. Med. Chem., 53, 4002–4008.
Peters, J., Trapp, M., Hill, F., Royer, E., Gabel, F., Trovaslet, M., Nachon, F., van Eijck, L., Masson, P., and Tehei, M. (2012) Phys. Chem. Chem. Phys., 14, 6764–6770.
Masson, P., Froment, M. T., Gillon, E., Nachon, F., Lockridge, O., and Schopfer, L. M. (2007) Biochim. Biophys. Acta, 1774, 16–34.
Neet, K. E., and Ainslie, G. G. (1980) Meth. Enzymol., 64, 192–227.
Icimoto, M. Y., Barros, N. M., Ferreira, J. C., Marcondes, M. F., Andrade, D., Machado, M. F., Juliano, M. A., Judice, W. A., Juliano, L., and Oliveira, V. (2011) PlosOne, 6, e24545 (1–7).
Atkins, W., and Qian, H. (2011) Biochemistry, 50, 3866–3872.
James, L. C., and Tawfik, D. S. (2003) Trends Biochem. Sci., 28, 361–368.
Kim, Y., Kalinowski, S. S., and Marcinkeviciene, J. (2007) Biochemistry, 46, 1423–1431.
Xu, Y., Colletier, J. Ph., Jiang, H., Silman, I., Sussman, J. L., and Weik, M. (2008) Prot. Sci., 17, 601–605.
Ramanathan, A., Savol, A. J., Langmead, C., Agarwal, P. K., and Chennubotla, C. S. (2011) PlosOne, 6, e15827 (116).
English, B. P., Min, W., van Oijen, A. M., Lee, K. T., Luo, G., Sun, H., Cherayil, B., Kou, S. C., and Xie, X. S. (2006) Nature Chem. Biol., 2, 87–94.
Benkovic, S. J., Hammes, G. G., and Hammes-Schiffer, S. (2008) Biochemistry, 47, 3317–3321.
Hauser, M. J. B., Kummer, U., Larse, A. Z., and Olsen, L. F. (2001) Faraday Discuss., 120, 215–227.
Olsen, L. F., Hauser, M. J. B., and Kummer, U. (2003) Eur. J. Biochem., 270, 2796–2804.
Shen, P., and Larter, R. (1994) Biophys. J., 67, 1414–1428.
Bayramov, Sh. K. (2002) Fizika, 8, 6–9.
Friboulet, A., and Thomas, D. (1982) Biophys. Chem., 16, 153–157.
Malik, F., and Stefuca, V. (2002) Chem. Pap., 56, 406–411.
Ngo, L. G., and Roussel, M. R. (1997) Eur. J. Biochem., 245, 182–190.
Anglister, L., Eichler, J., Szabo, M., Haesaert, B., and Salpeter, M. M. (1998) J. Neurosci. Meth., 81, 63–71.
Maguire, R. J., Hijazi, N. H., and Laidler, K. J. (1974) Biochim. Biophys. Acta, 341, 1–14.
Author information
Authors and Affiliations
Corresponding author
Additional information
Published in Russian in Biokhimiya, 2012, Vol. 77, No. 10, pp. 1383–1400.
In memory of Boris N. Goldstein (1943–2011). Boris N. Goldstein was not only a distinguished scientist who applied the graph theory to formal enzyme kinetics, he was also a fabulous palindrome creator (B. N. Goldstein, Palindromes, Foton-vek, Pushchino, 2009, 112 p.). In homage to Boris, I would like to show French avatar of the famous Latin palindrome, known as the Sator square, initially found in the ruins of Pompeii (see color insert). The picture is an example of this magic square as inserted in a house door of the old Grenoble, France.
Electronic supplementary material
Rights and permissions
About this article
Cite this article
Masson, P. Time-dependent kinetic complexities in cholinesterase-catalyzed reactions. Biochemistry Moscow 77, 1147–1161 (2012). https://doi.org/10.1134/S0006297912100070
Received:
Published:
Issue Date:
DOI: https://doi.org/10.1134/S0006297912100070
Key words
- cholinesterase
- pre-steady state
- hysteresis
- time-dependent
- preexisting slow equilibrium
- enzyme conformer
- damped oscillations
- inhibition