Biochemistry (Moscow)

, Volume 77, Issue 7, pp 754–760 | Cite as

Testing predictions of the programmed and stochastic theories of aging: Comparison of variation in age at death, menopause, and sexual maturation

  • N. S. Gavrilova
  • L. A. Gavrilov
  • F. F. Severin
  • V. P. Skulachev
Article

Abstract

One of the arguments against aging being programmed is the assumption that variation in the timing of aging-related outcomes is much higher compared to variation in timing of the events programmed by ontogenesis. The main objective of this study was to test the validity of this argument. To this aim, we compared absolute variability (standard deviation) and relative variability (coefficient of variation) for parameters that are known to be determined by the developmental program (age at sexual maturity) with variability of characteristics related to aging (ages at menopause and death). We used information on the ages at sexual maturation (menarche) and menopause from the nationally representative survey of the adult population of the United States (MIDUS) as well as published data for 14 countries. We found that coefficients of variation are in the range of 8–13% for age at menarche, 7–11% for age at menopause, and 16–21% for age at death. Thus, the relative variability for the age at death is only twice higher than for the age at menarche, while the relative variability for the age at menopause is almost the same as for the age at menarche.

Key words

aging variability menarche menopause lifespan 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Austad, S. N. (2004) Aging Cell, 3, 249–251.PubMedCrossRefGoogle Scholar
  2. 2.
    Bredesen, D. E. (2004) Aging Cell, 3, 261–262.PubMedCrossRefGoogle Scholar
  3. 3.
    Gavrilov, L. A., and Gavrilova, N. S. (1991) The Biology of Life Span: A Quantitative Approach, Harwood Academic Publisher, New York.Google Scholar
  4. 4.
    Gavrilov, L. A., and Gavrilova, N. S. (2006) in Handbook of the Biology of Aging (Masoro, E. J., and Austad, S. N., eds.) Academic Press, San Diego, pp. 1–40.Google Scholar
  5. 5.
    Kirkwood, T. B. L., Feder, M., Finch, C. E., Franceschi, C., Globerson, A., Klingenberg, C. P., LaMarco, K., Omholt, S., and Westendorp, R. G. J. (2005) Mechanisms Ageing Devel., 126, 439–443.CrossRefGoogle Scholar
  6. 6.
    Gavrilov, L. A., and Gavrilova, N. S. (2002) Thescientificworldjournal, 2, 339–356.PubMedCrossRefGoogle Scholar
  7. 7.
    Bredesen, D. E. (2004) Aging Cell, 3, 255–259.PubMedCrossRefGoogle Scholar
  8. 8.
    Mitteldorf, J. (2010) Rejuvenation Res., 13, 322–326.PubMedCrossRefGoogle Scholar
  9. 9.
    Blagosklonny, M. V. (2007) J. Cell. Biochem., 102, 1389–1399.PubMedCrossRefGoogle Scholar
  10. 10.
    Bowles, J. (2000) Med. Hypotheses, 54, 326–339.PubMedCrossRefGoogle Scholar
  11. 11.
    Bowles, J. T. (1998) Med. Hypotheses, 51, 179–221.PubMedCrossRefGoogle Scholar
  12. 12.
    De Magalhaes, J. P., and Church, G. M. (2005) Physiology, 20, 252–259.PubMedCrossRefGoogle Scholar
  13. 13.
    Goldsmith, T. C. (2003) Aging as an Evolved Characteristic — Weismann’s Theory Reconsidered. The Evolution of Aging, Universe Publishers, New York.Google Scholar
  14. 14.
    Goldsmith, T. C. (2008) J. Theor. Biol., 252, 764–768.PubMedCrossRefGoogle Scholar
  15. 15.
    Libertini, G. (2008) Thescientificworldjournal, 8, 182–193.PubMedCrossRefGoogle Scholar
  16. 16.
    Longo, V. D., Mitteldorf, J., and Skulachev, V. P. (2005) Nature Rev. Genet., 6, 866–872.PubMedCrossRefGoogle Scholar
  17. 17.
    Pierpaoli, W., and Bulian, D. (2001) J. Anti-Aging Med., 4, 31–37.CrossRefGoogle Scholar
  18. 18.
    Skulachev, V. P. (1997) Biochemistry (Moscow), 62, 1191–1195.Google Scholar
  19. 19.
    Skulachev, V. P. (1999) Biochemistry (Moscow), 64, 1418–1426.Google Scholar
  20. 20.
    Skulachev, V. P. (1999) Mol. Asp. Med., 20, 139–184.CrossRefGoogle Scholar
  21. 21.
    Skulachev, V. P. (2001) Exp. Gerontol., 36, 995–1024.PubMedCrossRefGoogle Scholar
  22. 22.
    Skulachev, V. P. (2003) in Topics in Current Genetics Model Systems in Ageing (Nystrom, T., and Osiewacz, H. D., eds.) Springer-Verlag, Berlin-Heidelberg, pp. 191–238.Google Scholar
  23. 23.
    Skulachev, V. P. (2009) Biochim. Biophys. Acta-Bioenergetics, 1777, S6–S6.CrossRefGoogle Scholar
  24. 24.
    Skulachev, V. P., and Longo, V. D. (2005) Reversal of Aging: Resetting the Pineal Clock, 1057, 145–164.Google Scholar
  25. 25.
    Austad, S. N. (2004) Aging Cell, 3, 253–254.PubMedCrossRefGoogle Scholar
  26. 26.
    Ayatollahi, S. M. T., Dowlatabadi, E., and Ayatollahi, S. A. R. (2002) Ann. Hum. Biol., 29, 355–362.PubMedCrossRefGoogle Scholar
  27. 27.
    Chavarro, J., Villamor, E., Narvaez, J., and Hoyos, A. (2004) Ann. Hum. Biol., 31, 245–257.PubMedCrossRefGoogle Scholar
  28. 28.
    Cho, G. J., Park, H. T., Shin, J. H., Hur, J. Y., Kim, Y. T., Kim, S. H., Lee, K. W., and Kim, T. (2010) Eur. J. Pediatrics, 169, 89–94.CrossRefGoogle Scholar
  29. 29.
    Ku, S. Y., Kang, J. W., Kim, H., Kim, Y. D., Jee, B. C., Suh, C. S., Choi, Y. M., Kim, J. G., Moon, S. Y., and Kim, S. H. (2006) Hum. Reprod., 21, 833–836.PubMedCrossRefGoogle Scholar
  30. 30.
    Mandel, D., Zimlichman, E., Mimouni, F. B., Grotto, I., and Kreiss, Y. (2004) J. Pediatr. Endocrinol. Metab., 17, 1507–1510.PubMedCrossRefGoogle Scholar
  31. 31.
    Onland-Moret, N. C., Peeters, P. H. M., van Gils, C. H., Clavel-Chapelon, F., Key, T., Tjonneland, A., Trichopoulou, A., Kaaks, R., Manjer, J., Panico, S., et al. (2005) Am. J. Epidemiol., 162, 623–632.PubMedCrossRefGoogle Scholar
  32. 32.
    Pasquet, P., Biyong, A. M. D., Rikong-Adie, H., Befidi-Mengue, R., Garba, M. T., and Froment, A. (1999) Ann. Hum. Biol., 26, 89–97.PubMedCrossRefGoogle Scholar
  33. 33.
    Brim, O. G., Ryff, C. D., and Kessler, R. C. (2004) in How Healthy Are We?: A National Study of Well-Being at Midlife, University of Chicago Press, Chicago, pp. 1–34.Google Scholar
  34. 34.
    Blumel, J. E., Chedraui, P., Calle, A., Bocanera, R., Depiano, E., Figueroa-Casas, P., Gonzalez, C., Martino, M., Royer, M., Zuniga, C., et al. (2006) Menopause — J. North Amer. Menopause Soc., 13, 706–712.Google Scholar
  35. 35.
    Fallahzadeh, H. (2007) Menopause —J. North Amer. Menopause Soc., 14, 900–904.Google Scholar
  36. 36.
    Hong, J. S., Yi, S. W., Kang, H. C., Jee, S. H., Kang, H. G., Bayasgalan, G., and Ohrr, H. (2007) Maturitas, 56, 411–419.PubMedCrossRefGoogle Scholar
  37. 37.
    Kapur, P., Sinha, B., and Pereira, B. M. J. (2009) Menopause — J. North Amer. Menopause Soc., 16, 378–384.Google Scholar
  38. 38.
    Kirchengast, S. (1994) Homo, 44, 263–277.Google Scholar
  39. 39.
    Sievert, L. L., and Hautaniemi, S. I. (2003) Hum. Biol., 75, 205–226.PubMedCrossRefGoogle Scholar
  40. 40.
    Walker, A. R. P., Walker, B. F., Ncongwane, J., and Tshabalala, E. N. (1984) Br. J. Obstetrics Gynecol., 91, 797–801.CrossRefGoogle Scholar
  41. 41.
    Human Mortality Database (2010) http://www.mortality.org, Accessed 02/14/10, University of California, Berkeley, Max Planck Institute for Demographic Research.
  42. 42.
    Kessler, R. C., DuPont, R. L., Berglund, P., and Wittchen, H. U. (1999) Am. J. Psychiatry, 156, 1915–1923.PubMedGoogle Scholar
  43. 43.
    Kessler, R. C., Mickelson, K., and Zahao, S. (1997) Social Policy, 27, 27–46.Google Scholar
  44. 44.
    Edwards, R. D., and Tuljapurkar, S. (2005) Population Devel. Rev., 31, 645–674.CrossRefGoogle Scholar
  45. 45.
    Simpson, G. G., Roe, A., and Lewontin, R. G. (2003) Quantitative Zoology: Revised Edition, Dover Publications, Inc., New York.Google Scholar
  46. 46.
    Sun, S. M. S., Schubert, C. M., Chumlea, W. C., Roche, A. F., Kulin, H. E., Lee, P. A., Himes, J. H., and Ryan, A. S. (2002) Pediatrics, 110, 911–919.PubMedCrossRefGoogle Scholar
  47. 47.
    Towne, B., Czerwinski, S. A., Dernerath, E. W., Blangero, J., Roche, A. F., and Siervogel, R. M. (2005) Am. J. Phys. Anthropol., 128, 210–219.PubMedCrossRefGoogle Scholar
  48. 48.
    Salces, I., Rebato, E. M., Susanne, C., San Martin, L., and Rosique, J. (2001) Ann. Hum. Biol., 28, 143–156.PubMedCrossRefGoogle Scholar
  49. 49.
    Hwang, J. Y., Shin, C., Frongillo, E. A., Shin, K. R., and Jo, I. (2003) Ann. Hum. Biol., 30, 434–442.PubMedCrossRefGoogle Scholar
  50. 50.
    Nichols, H. B., Trentham-Dietz, A., Hampton, J. M., Titus-Ernstoff, L., Egan, K. M., Willett, W. C., and Newcomb, P. A. (2006) Am. J. Epidemiol., 164, 1003–1011.PubMedCrossRefGoogle Scholar
  51. 51.
    Helm, P., and Gronlund, L. (1998) Acta Obstetr. Gynecol. Scand., 77, 198–200.CrossRefGoogle Scholar
  52. 52.
    Jacobsen, B. K., Oda, K., Knutsen, S. F., and Fraser, G. E. (2009) Int. J. Epidemiol., 38, 245–252.PubMedCrossRefGoogle Scholar
  53. 53.
    Velde, E. R. T., Dorland, M., and Broekmans, F. J. (1998) Maturitas, 30, 119–125.CrossRefGoogle Scholar
  54. 54.
    Murabito, J. M., Yang, Q., Fox, C., Wilson, P. W. F., and Cupples, L. A. (2005) J. Clin. Endocrinol. Metab., 90, 3427–3430.PubMedCrossRefGoogle Scholar
  55. 55.
    Amagai, Y., Ishikawa, S., Gotoh, T., Kayaba, K., Nakamura, Y., and Kajii, E. (2006) J. Epidemiol., 16, 161–166.PubMedCrossRefGoogle Scholar
  56. 56.
    Jacobsen, B. K., Heuch, I., and Kvale, G. (2003) Am. J. Epidemiol., 157, 923–929.PubMedCrossRefGoogle Scholar
  57. 57.
    Mondul, A. M., Rodriguez, C., Jacobs, E. J., and Calle, E. E. (2005) Am. J. Epidemiol., 162, 1089–1097.PubMedCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  • N. S. Gavrilova
    • 1
  • L. A. Gavrilov
    • 1
  • F. F. Severin
    • 2
  • V. P. Skulachev
    • 2
  1. 1.Center on AgingNORC at The University of ChicagoChicagoUSA
  2. 2.Belozersky Institute of Physico-Chemical Biology and Institute of MitoengineeringLomonosov Moscow State UniversityMoscowRussia

Personalised recommendations