Biochemistry (Moscow)

, Volume 77, Issue 6, pp 562–574 | Cite as

Ribosomal proteins: Structure, function, and evolution

  • A. V. Korobeinikova
  • M. B. Garber
  • G. M. GongadzeEmail author


The question concerning reasons for the variety of ribosomal proteins that arose for more than 40 years ago is still open. Ribosomes of modern organisms contain 50–80 individual proteins. Some are characteristic for all domains of life (universal ribosomal proteins), whereas others are specific for bacteria, archaea, or eucaryotes. Extensive information about ribosomal proteins has been obtained since that time. However, the role of the majority of ribosomal proteins in the formation and functioning of the ribosome is still not so clear. Based on recent data of experiments and bioinformatics, this review presents a comprehensive evaluation of structural conservatism of ribosomal proteins from evolutionarily distant organisms. Considering the current knowledge about features of the structural organization of the universal proteins and their intermolecular contacts, a possible role of individual proteins and their structural elements in the formation and functioning of ribosomes is discussed. The structural and functional conservatism of the majority of proteins of this group suggests that they should be present in the ribosome already in the early stages of its evolution.

Key words

ribosomal proteins RNA-protein interactions ribosome evolution 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Waller, J. P., and Harris, J. I. (1961) Proc. Natl. Acad. Sci. USA, 47, 18–23.PubMedCrossRefGoogle Scholar
  2. 2.
    Sun, T. T., Bickle, T. A., and Traut, R. R. (1972) J. Bacteriol., 111, 474–480.PubMedGoogle Scholar
  3. 3.
    Kaltschmidt, E., and Wittmann, H. G. (1970) Proc. Natl. Acad. Sci. USA, 67, 1276–1282.PubMedCrossRefGoogle Scholar
  4. 4.
    Strom, A. R., and Visentin, L. P. (1973) FEBS Lett., 37, 274–280.PubMedCrossRefGoogle Scholar
  5. 5.
    Collatz, E., Wool, I. G., Lin, A., and Stoffler, G. (1976) J. Biol. Chem., 251, 4666–4672.PubMedGoogle Scholar
  6. 6.
    Tsurugi, K., Collatz, E., Todokoro, K., and Wool, I. G. (1977) J. Biol. Chem., 252, 3961–3969.PubMedGoogle Scholar
  7. 7.
    Wittmann, H. G. (1982) Annu. Rev. Biochem., 51, 155–183.PubMedCrossRefGoogle Scholar
  8. 8.
    Lindahl, L., and Zengel, J. M. (1986) Annu. Rev. Genet., 20, 297–326.PubMedCrossRefGoogle Scholar
  9. 9.
    Wittmann-Liebold, B., and Dzionara, M. (1976) FEBS Lett., 65, 281–283.PubMedCrossRefGoogle Scholar
  10. 10.
    Gasteiger, E., Gattiker, A., Hoogland, C., Ivanyi, I., Appel, R. D., and Bairoch, A. (2003) Nucleic Acids Res., 31, 3784–3788.PubMedCrossRefGoogle Scholar
  11. 11.
    Benson, D. A., Karsch-Mizrachi, I., Lipman, D. J., Ostell, J., and Wheeler, D. L. (2008) Nucleic Acids Res., 36, 25–30.CrossRefGoogle Scholar
  12. 12.
    Wittmann-Liebold, B., Kopke, A. K. E., Arndt, E., Kromer, W., Hatakeyama, T., and Wittmann, H.-G. (1990) in The Ribosome: Structure, Function, and Evolution (Hill, W. E., Dahlberg, A., Garrett, R. A., Moore, P. B., Schlessinger, D., and Warner, J. R., eds.) American Society for Microbiologists, Washington, DC, pp. 598–613.Google Scholar
  13. 13.
    Arndt, E., Scholzen, T., Kromer, W., Hatakeyama, T., and Kimura, M. (1991) Biochimie, 73, 657–668.PubMedCrossRefGoogle Scholar
  14. 14.
    Wool, I. G., Chan, Y. L., and Gluck, A. (1995) Biochem. Cell Biol., 73, 933–947.PubMedCrossRefGoogle Scholar
  15. 15.
    Lecompte, O., Ripp, R., Thierry, J. C., Moras, D., and Poch, O. (2002) Nucleic Acids Res., 30, 5382–5390.PubMedCrossRefGoogle Scholar
  16. 16.
    Mushegian, A. R., and Koonin, E. V. (1996) Proc. Natl. Acad. Sci. USA, 93, 10268–10273.PubMedCrossRefGoogle Scholar
  17. 17.
    Yamaguchi, K., von Knoblauch, K., and Subramanian, A. R. (2000) J. Biol. Chem., 275, 28455–28465.PubMedCrossRefGoogle Scholar
  18. 18.
    Yamaguchi, K., and Subramanian, A. R. (2000) J. Biol. Chem., 275, 28466–28482.PubMedCrossRefGoogle Scholar
  19. 19.
    Smits, P., Smeitink, J. A., van den Heuvel, L. P., Huynen, M. A., and Ettema, T. J. (2007) Nucleic Acids Res., 35, 4686–4703.PubMedCrossRefGoogle Scholar
  20. 20.
    Belova, L., Tenson, T., Xiong, L., McNicholas, P. M., and Mankin, A. S. (2001) Proc. Natl. Acad. Sci. USA, 98, 3726–3731.PubMedCrossRefGoogle Scholar
  21. 21.
    Harms, J., Schluenzen, F., Zarivach, R., Bashan, A., Bartels, H., Agmon, I., and Yonath, A. (2002) FEBS Lett., 525, 176–178.PubMedCrossRefGoogle Scholar
  22. 22.
    Klein, D. J., Moore, P. B., and Steitz, T. A. (2004) J. Mol. Biol., 340, 141–177.PubMedCrossRefGoogle Scholar
  23. 23.
    Ban, N., Nissen, P., Hansen, J., Moore, P. B., and Steitz, T. A. (2000) Science, 289, 905–920.PubMedCrossRefGoogle Scholar
  24. 24.
    Ben-Shem, A., Garreau de Loubresse, N., Melnikov, S., Jenner, L., Yusupova, G., and Yusupov, M. (2011) Science, 334, 1524–1529.PubMedCrossRefGoogle Scholar
  25. 25.
    Klinge, S., Voigts-Hoffmann, F., Leibundgut, M., Arpagaus, S., and Ban, N. (2011) Science, 334, 941–948.PubMedCrossRefGoogle Scholar
  26. 26.
    Harms, J., Schluenzen, F., Zarivach, R., Bashan, A., Gat, S., Agmon, I., Bartels, H., Franceschi, F., and Yonath, A. (2001) Cell, 107, 679–688.PubMedCrossRefGoogle Scholar
  27. 27.
    Yusupov, M. M., Yusupova, G. Zh., Baucom, A., Lieberman, K., Earnest, T. N., Cate, J. H. D., and Noller, H. F. (2001) Science, 292, 883–896.PubMedCrossRefGoogle Scholar
  28. 28.
    Schuwirth, B. S., Borovinskaya, M. A., Hau, C. W., Zhang, W., Vila-Sanjurjo, A., Holton, J. M., and Cate, J. H. D. (2005) Science, 310, 827–834.PubMedCrossRefGoogle Scholar
  29. 29.
    Selmer, M., Dunham, C. M., Murphy, F. V., IV, Weixlbaumer, A., Petry, S., Kelley, A. C., Weir, J. R., and Ramakrishnan, V. (2006) Science, 313, 1935–1942.PubMedCrossRefGoogle Scholar
  30. 30.
    Wang, J., Dasgupta, I., and Fox, G. (2009) Archaea, 2, 241–251.PubMedCrossRefGoogle Scholar
  31. 31.
    Hartman, H., Favaretto, P., and Smith, T. F. (2006) Archaea, 2, 1–9.PubMedCrossRefGoogle Scholar
  32. 32.
    Spahn, C. M., Beckmann, R., Eswar, N., Penczek, P. A., Sali, A., Blobel, G., and Frank, J. (2001) Cell, 107, 373–386.PubMedCrossRefGoogle Scholar
  33. 33.
    Dabbs, E. R. (1991) Biochimie, 73, 639–645.PubMedCrossRefGoogle Scholar
  34. 34.
    Baba, T., Ara, T., Hasegawa, M., Takai, Y., Okumura, Y., Baba, M., Datsenko, K. A., Tomita, M., Wanner, B. L., and Mori, H. (2006) Mol. Syst. Biol., 2, 1–11.CrossRefGoogle Scholar
  35. 35.
    Bubunenko, M., Baker, T., and Court, D. L. (2007) J. Bacteriol., 189, 2844–2853.PubMedCrossRefGoogle Scholar
  36. 36.
    Al-Karadaghi, S., Kristensen, O., and Liljas, A. (2000) Prog. Biophys. Mol. Biol., 73, 167–193.PubMedCrossRefGoogle Scholar
  37. 37.
    Wimberly, B. T., Brodersen, D. E., Clemons, W. M., Jr., Morgan-Warren, R. J., Carter, A. P., Vonrhein, C., Hartsch, T., and Ramakrishnan, V. (2000) Nature, 407, 327–339.PubMedCrossRefGoogle Scholar
  38. 38.
    Brodersen, D. E., Clemons, W. M., Jr., Carter, A. P., Wimberly, B. T., and Ramakrishnan, V. (2002) J. Mol. Biol., 316, 725–768.PubMedCrossRefGoogle Scholar
  39. 39.
    Perederina, A., Nevskaya, N., Nikonov, O., Nikulin, A., Dumas, P., Yao, M., Tanaka, I., Garber, M., Gongadze, G., and Nikonov, S. (2002) RNA, 8, 1548–1557.PubMedGoogle Scholar
  40. 40.
    Allers, J., and Shamoo, Y. (2001) J. Mol. Biol., 311, 75–86.PubMedCrossRefGoogle Scholar
  41. 41.
    Wimberly, B. T., Guymon, R., McCutcheon, J. P., White, S. W., and Ramakrishnan, V. (1999) Cell, 97, 491–502.PubMedCrossRefGoogle Scholar
  42. 42.
    Woestenenk, E. A., Gongadze, G. M., Shcherbakov, D. V., Rak, A. V., Garber, M. B., Hard, T., and Berglund, H. (2002) Biochem. J., 363, 553–561.PubMedCrossRefGoogle Scholar
  43. 43.
    Aevarsson, A., Brazhnikov, E., Garber, M., Zheltonosova, J., Chirgadze, Y., Al-Karadaghi, S., Svensson, L. A., and Liljas, A. (1994) EMBO J., 13, 3669–3677.PubMedGoogle Scholar
  44. 44.
    Fedorov, R., Meshcheryakov, V., Gongadze, G., Fomenkova, N., Nevskaya, N., Selmer, M., Laurberg, M., Kristensen, O., Al-Karadaghi, S., Liljas, A., Garber, M., and Nikonov, S. (2001) Acta Crystallogr. Section D, 57, 968–976.CrossRefGoogle Scholar
  45. 45.
    Malygin, A. A., and Karpova, G. G. (2010) Nucleic Acids Res., 38, 2089–2098.PubMedCrossRefGoogle Scholar
  46. 46.
    Stern, S., Powers, T., Changchien, L. M., and Noller, H. F. (1989) Science, 244, 783–790.PubMedCrossRefGoogle Scholar
  47. 47.
    Brimacombe, R. (1991) Biochimie, 73, 927–936.PubMedCrossRefGoogle Scholar
  48. 48.
    Powers, T., and Noller, H. F. (1995) RNA, 1, 194–209.PubMedGoogle Scholar
  49. 49.
    Ostergaard, P., Phan, H., Johansen, L. B., Egebjerg, J., Ostergaard, L., Porse, B. T., and Garrett, R. A. (1998) J. Mol. Biol., 284, 227–240.PubMedCrossRefGoogle Scholar
  50. 50.
    Held, W. A., Ballou, B., Mizushima, S., and Nomura, M. (1974) J. Biol. Chem., 249, 3103–3111.PubMedGoogle Scholar
  51. 51.
    Nierhaus, K. H. (1991) Biochimie, 73, 739–755.PubMedCrossRefGoogle Scholar
  52. 52.
    Talkington, M. W., Siuzdak, G., and Williamson, J. R. (2005) Nature, 438, 628–632.PubMedCrossRefGoogle Scholar
  53. 53.
    Mulder, A. M., Yoshioka, C., Beck, A. H., Bunner, A. E., Milligan, R. A., Potter, C. S., Carragher, B., and Williamson, J. R. (2010) Science, 330, 673–677.PubMedCrossRefGoogle Scholar
  54. 54.
    Traub, P., and Nomura, M. (1968) Proc. Natl. Acad. Sci. USA, 59, 777–784.PubMedCrossRefGoogle Scholar
  55. 55.
    Nierhaus, K. H., and Dohme, F. (1974) Proc. Natl. Acad. Sci. USA, 71, 4713–4717.PubMedCrossRefGoogle Scholar
  56. 56.
    Vasiliev, V. D., Serdyuk, I. N., Gudkov, A. T., and Spirin, A. S. (1986) in Structure, Function, and Genetics of Ribosome: (Hardesty, B., and Kramer, G., eds.) Springer-Verlag, New York-Berlin-Heidelberg, pp. 128–142.CrossRefGoogle Scholar
  57. 57.
    Held, W. A., and Nomura, M. (1973) Biochemistry, 12, 3273–3281.PubMedCrossRefGoogle Scholar
  58. 58.
    Spillmann, S., Dohme, F., and Nierhaus, K. H. (1977) J. Mol. Biol., 115, 513–523.PubMedCrossRefGoogle Scholar
  59. 59.
    Rohl, R., and Nierhaus, K. H. (1982) Proc. Natl. Acad. Sci. USA, 79, 729–733.PubMedCrossRefGoogle Scholar
  60. 60.
    Mandiyan, V., Tumminia, S. J., Wall, J. S., Hainfeld, J. F., and Boublik, M. (1991) Proc. Natl. Acad. Sci. USA, 88, 8174–8178.PubMedCrossRefGoogle Scholar
  61. 61.
    Tumminia, S. J., Hellmann, W., Wall, J. S., and Boublik, M. (1994) J. Mol. Biol., 235, 1239–1250.PubMedCrossRefGoogle Scholar
  62. 62.
    Holmes, K. L., and Culver, G. M. (2004) Nat. Struct. Mol. Biol., 11, 179–186.PubMedCrossRefGoogle Scholar
  63. 63.
    Nashimoto, H., Held, W., Kaltschmidt, E., and Nomura, M. (1971) J. Mol. Biol., 62, 121–138.PubMedCrossRefGoogle Scholar
  64. 64.
    Nierhaus, K. H., Bordasch, K., and Homann, H. E. (1973) J. Mol. Biol., 74, 587–597.PubMedCrossRefGoogle Scholar
  65. 65.
    Kaczanowska, M., and Ryden-Aulin, M. (2007) Microbiol. Mol. Biol. Rev., 71, 477–494.PubMedCrossRefGoogle Scholar
  66. 66.
    Wilson, D. N., and Nierhaus, K. H. (2007) Crit. Rev. Biochem. Mol. Biol., 42, 187–219.PubMedCrossRefGoogle Scholar
  67. 67.
    Sykes, M. T., Shajani, Z., Sperling, E., Beck, A. H., and Williamson, J. R. (2010) J. Mol. Biol., 403, 331–345.PubMedCrossRefGoogle Scholar
  68. 68.
    Caetano-Anolles, G. (2002) Nucleic Acids Res., 30, 2575–2587.PubMedCrossRefGoogle Scholar
  69. 69.
    Mears, J. A., Cannone, J. J., Stagg, S. M., Gutell, R. R., Agrawal, R. K., and Harvey, S. C. (2002) J. Mol. Biol., 321, 215–234.PubMedCrossRefGoogle Scholar
  70. 70.
    Hury, J., Nagaswamy, U., Larios-Sanz, M., and Fox, G. E. (2006) Orig. Life Evol. Biosph., 36, 421–429.PubMedCrossRefGoogle Scholar
  71. 71.
    Sun, F. J., and Caetano-Anolles, G. (2009) J. Mol. Evol., 69, 430–443.PubMedCrossRefGoogle Scholar
  72. 72.
    Caetano-Anolles, D., Kim, K. M., Mittenthal, J. E., and Caetano-Anolles, G. (2011) J. Mol. Evol., 72, 14–33.PubMedCrossRefGoogle Scholar
  73. 73.
    Dabbs, E. R. (1982) Mol. Gen. Genet., 187, 453–458.PubMedCrossRefGoogle Scholar
  74. 74.
    Bubunenko, M., Korepanov, A., Court, D. L., Jagannathan, I., Dickinson, D., Chaudhuri, B. R., Garber, M. B., and Culver, G. M. (2006) RNA, 12, 1229–1239.PubMedCrossRefGoogle Scholar
  75. 75.
    Herold, M., Nowotny, V., Dabbs, E. R., and Nierhaus, K. H. (1986) Mol. Gen. Genet., 203, 281–287.PubMedCrossRefGoogle Scholar
  76. 76.
    Franceschi, F. J., and Nierhaus, K. H. (1990) J. Biol. Chem., 265, 16676–16682.PubMedGoogle Scholar
  77. 77.
    Bunner, A. E., Beck, A. H., and Williamson, J. R. (2010) Proc. Natl. Acad. Sci. USA, 107, 5417–5422.PubMedCrossRefGoogle Scholar
  78. 78.
    Cukras, A. R., and Green, R. (2005) J. Mol. Biol., 349, 47–59.PubMedCrossRefGoogle Scholar
  79. 79.
    Korepanov, A. P., Gongadze, G. M., Garber, M. B., Court, D. L., and Bubunenko, M. G. (2007) J. Mol. Biol., 366, 1199–1208.PubMedCrossRefGoogle Scholar
  80. 80.
    Hamel, E., Koka, M., and Nakamoto, T. (1972) J. Biol. Chem., 247, 805–814.PubMedGoogle Scholar
  81. 81.
    Gao, H., Sengupta, J., Valle, M., Korostelev, A., Eswar, N., Stagg, S. M., van Roey, P., Agrawal, R. K., Harvey, S. C., Sali, A., Chapman, M. S., and Frank, J. (2003) Cell, 113, 789–801.PubMedCrossRefGoogle Scholar
  82. 82.
    Lambert, J. M., and Traut, R. R. (1981) J. Mol. Biol., 149, 451–276.PubMedCrossRefGoogle Scholar
  83. 83.
    Frank, J., and Agrawal, R. K. (2000) Nature, 406, 318–322.PubMedCrossRefGoogle Scholar
  84. 84.
    Valle, M., Zavialov, A., Sengupta, J., Rawat, U., Ehrenberg, M., and Frank, J. (2003) Cell, 114, 123–134.PubMedCrossRefGoogle Scholar
  85. 85.
    Shatsky, I. N., Bakin, A. V., Bogdanov, A. A., and Vasiliev, V. D. (1991) Biochimie, 73, 937–945.PubMedCrossRefGoogle Scholar
  86. 86.
    Gimautdinova, O. I., Karpova, G. G., Knorre, D. G., and Kobetz, N. D. (1981) Nucleic Acids Res., 9, 3465–3481.PubMedCrossRefGoogle Scholar
  87. 87.
    Rinke-Appel, J., Junke, N., Stade, K., and Brimacombe, R. (1991) EMBO J., 10, 2195–2202.PubMedGoogle Scholar
  88. 88.
    Dontsova, O., Kopylov, A., and Brimacombe, R. (1991) EMBO J., 10, 2613–2620.PubMedGoogle Scholar
  89. 89.
    Dontsova, O. A., Rosen, K. V., Bogdanova, S. L., Skripkin, E. A., Kopylov, A. M., and Bogdanov, A. A. (1992) Biochimie, 74, 363–371.PubMedCrossRefGoogle Scholar
  90. 90.
    Yusupova, G. Z., Yusupov, M. M., Cate, J. H., and Noller, H. F. (2001) Cell, 106, 233–241.PubMedCrossRefGoogle Scholar
  91. 91.
    Yusupova, G., Jenner, L., Rees, B., Moras, D., and Yusupov, M. (2006) Nature, 444, 391–394.PubMedCrossRefGoogle Scholar
  92. 92.
    Ogle, J. M., Brodersen, D. E., Clemons, W. M., Jr., Tarry, M. J., Carter, A. P., and Ramakrishnan, V. (2001) Science, 292, 897–902.PubMedCrossRefGoogle Scholar
  93. 93.
    Ogle, J. M., Murphy, F. V., Tarry, M. J., and Ramakrishnan, V. (2002) Cell, 111, 721–732.PubMedCrossRefGoogle Scholar
  94. 94.
    Stoffler, G., Deusser, E., Wittmann, H. G., and Apirion, D. (1971) Mol. Gen. Genet., 111, 334–341.PubMedCrossRefGoogle Scholar
  95. 95.
    Donner, D., and Kurland, C. G. (1972) Mol. Gen. Genet., 115, 49–53.PubMedCrossRefGoogle Scholar
  96. 96.
    Ruusala, T., Andersson, D., Ehrenberg, M., and Kurland, C. G. (1984) EMBO J., 3, 2575–2580.PubMedGoogle Scholar
  97. 97.
    Vladimirov, S. N., Graifer, D. M., and Karpova, G. G. (1981) FEBS Lett., 135, 155–158.PubMedCrossRefGoogle Scholar
  98. 98.
    Abdurashidova, G. G., Tsvetkova, E. A., and Budowsky, E. I. (1991) Nucleic Acids Res., 19, 1909–1915.PubMedCrossRefGoogle Scholar
  99. 99.
    Mitchell, P., Stade, K., Osswald, M., and Brimacombe, R. (1993) Nucleic Acids Res., 21, 887–896.PubMedCrossRefGoogle Scholar
  100. 100.
    Osswald, M., Doring, T., and Brimacombe, R. (1995) Nucleic Acids Res., 23, 4635–4641.PubMedCrossRefGoogle Scholar
  101. 101.
    Schmeing, T. M., Voorhees, R. M., Kelley, A. C., Gao, Y. G., Murphy, F. V., 4th., Weir, J. R., and Ramakrishnan, V. (2009) Science, 326, 688–694.PubMedCrossRefGoogle Scholar
  102. 102.
    Voorhees, R. M., Weixlbaumer, A., Loakes, D., Kelley, A. C., and Ramakrishnan, V. (2009) Nat. Struct. Mol. Biol., 16, 528–533.PubMedCrossRefGoogle Scholar
  103. 103.
    Kazemie, M. (1976) Eur. J. Biochem., 67, 373–378.PubMedCrossRefGoogle Scholar
  104. 104.
    Hoang, L., Fredrick, K., and Noller, H. F. (2004) Proc. Natl. Acad. Sci. USA, 101, 12439–12443.PubMedCrossRefGoogle Scholar
  105. 105.
    Maguire, B. A., Beniaminov, A. D., Ramu, H., Mankin, A. S., and Zimmermann, R. A. (2005) Mol. Cell., 20, 427–435.PubMedCrossRefGoogle Scholar
  106. 106.
    Devaraj, A., Shoji, S., Holbrook, E. D., and Fredrick, K. (2009) RNA, 15, 255–265.PubMedCrossRefGoogle Scholar
  107. 107.
    Robert, F., and Brakier-Gingras, L. (2003) J. Biol. Chem., 278, 44913–44920.PubMedCrossRefGoogle Scholar
  108. 108.
    Wilson, D. N., and Nierhaus, K. H. (2006) Cell Mol. Life Sci., 63, 2725–2737.PubMedCrossRefGoogle Scholar
  109. 109.
    Subramanian, A. R., and Dabbs, E. R. (1980) Eur. J. Biochem., 112, 425–430.PubMedCrossRefGoogle Scholar
  110. 110.
    Monro, R. E. (1967) J. Mol. Biol., 26, 147–151.PubMedCrossRefGoogle Scholar
  111. 111.
    Parker, K. K., and Wickstrom, E. (1983) Nucleic Acids Res., 11, 515–524.PubMedCrossRefGoogle Scholar
  112. 112.
    Olson, H. M., Nicholson, A. W., Cooperman, B. S., and Glitz, D. G. (1985) J. Biol. Chem., 260, 10326–10331.PubMedGoogle Scholar
  113. 113.
    Barta, A., Steiner, G., Brosius, J., Noller, H. F., and Kuechler, E. (1984) Proc. Natl. Acad. Sci. USA, 81, 3607–3611.PubMedCrossRefGoogle Scholar
  114. 114.
    Nissen, P., Hansen, J., Ban, N., Moore, P. B., and Steitz, T. A. (2000) Science, 289, 920–930.PubMedCrossRefGoogle Scholar
  115. 115.
    Wower, I. K., Wower, J., and Zimmermann, R. A. (1998) J. Biol. Chem., 273, 19847–19852.PubMedCrossRefGoogle Scholar
  116. 116.
    Girshovich, A. S., Bochkareva, E. S., and Gudkov, A. T. (1982) FEBS Lett., 150, 99–102.PubMedCrossRefGoogle Scholar
  117. 117.
    Moazed, D., Robertson, J. M., and Noller, H. F. (1988) Nature, 334, 362–364.PubMedCrossRefGoogle Scholar
  118. 118.
    Agrawal, R. K., Penczek, P., Grassucci, R. A., and Frank, J. (1998) Proc. Natl. Acad. Sci. USA, 95, 6134–6138.PubMedCrossRefGoogle Scholar
  119. 119.
    Koteliansky, V. E., Domogatsky, S. P., Gudkov, A. T., and Spirin, A. S. (1977) FEBS Lett., 73, 6–11.PubMedCrossRefGoogle Scholar
  120. 120.
    Schmidt, F. J., Thompson, J., Lee, K., Dijk, J., and Cundliffe, E. (1981) J. Biol. Chem., 256, 12301–12305.PubMedGoogle Scholar
  121. 121.
    Schrier, P. I., and Moller, W. (1975) FEBS Lett., 54, 130–134.PubMedCrossRefGoogle Scholar
  122. 122.
    Maassen, J. A., and Moller, W. (1981) Eur. J. Biochem., 115, 279–285.PubMedCrossRefGoogle Scholar
  123. 123.
    Skold, S.-E. (1982) Eur. J. Biochem., 127, 225–229.PubMedCrossRefGoogle Scholar
  124. 124.
    Gao, Y. G., Selmer, M., Dunham, C. M., Weixlbaumer, A., Kelley, A. C., and Ramakrishnan, V. (2009) Science, 326, 694–699.PubMedCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  • A. V. Korobeinikova
    • 1
  • M. B. Garber
    • 1
  • G. M. Gongadze
    • 1
    Email author
  1. 1.Institute of Protein ResearchRussian Academy of SciencesPushchino, Moscow RegionRussia

Personalised recommendations