Skip to main content
Log in

Nitrate reductase from Triticum aestivum leaves: Regulation of activity and possible role in production of nitric oxide

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Nitrate reductase (NR) and peroxidase (POX) are important enzymes involved in the metabolism of reactive oxygen (ROS) and nitrogen species in leaves of wheat (Triticum aestivum L.) seedlings. It has been confirmed that NR activity in wheat leaves depends on the light conditions and the presence of nitrates during the cultivation of the seedlings, and it is regulated by the molybdenum cofactor and phosphorylation. In the present study, confocal microscopy and EPR spectroscopy studies showed that the addition of nitrite, a product of NR, increased the level of nitric oxide (NO). This increase was prevented by the addition of sodium azide, an inhibitor of NR. The results suggest that in wheat leaves one of the key functions of NR is the formation of the signaling NO molecule. Cultivation of green plants under conditions of prolonged (4 days) darkness, a strong stress factor for photosynthesizing cells, decreased the activity of NR. Moreover, darkness induced significant elevation of the POX activity that was prevented by the addition of nitrate to the growth medium. It is proposed that the changes in light conditions result in the competition between nitrate- and ROS-metabolizing activities of POX in leaves, and a possible interaction between NR and POX controls the levels of NO and ROS in the leaf tissue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

DAF-FM:

4-amino-5-methylamino-2,7-difluorofluorescein diacetate

DDTC:

sodium diethyldithiocarbamate

DEANOate:

1,1-diethyl-2-hydroxy-2-nitrosohydrazine (sodium salt)

NO:

nitric oxide

NR:

nitrate reductase

POX:

peroxidase

ROS:

reactive oxygen species

References

  1. Morozkina, E. V., and Zvyagil’skaya, R. A. (2007) Biochemistry (Moscow), 72, 1151–1164.

    Article  CAS  Google Scholar 

  2. Yamasaki, H., and Sakihama, Y. (2000) FEBS Lett., 468, 89–92.

    Article  PubMed  CAS  Google Scholar 

  3. Rockel, P., Strube, F., Rockel, A., Wildt, J., and Kaiser, W. M. (2002) J. Exp. Bot., 53, 103–110.

    Article  PubMed  CAS  Google Scholar 

  4. Kaiser, W. M., Weiner, H., Kandlbinder, A., Tsai, C.-B., Rockel, P., Sonoda, M., and Planchet, E. (2002) J. Exp. Bot., 53, 875–882.

    Article  PubMed  CAS  Google Scholar 

  5. Tarchevskii, I. A. (2002) Signal Systems in Plant Cells [in Russian], Nauka, Moscow.

  6. Wilson, I. D., Neill, S. J., and Hancock, J. T. (2008) Plant Cell Environ., 31, 622–631.

    Article  PubMed  CAS  Google Scholar 

  7. Kolupaev, Yu. V., and Karpets, Yu. V. (2009) Visnik Kharkiv Nats. Agr. Univ., 3, 6–19.

    Google Scholar 

  8. Dubovskaya, L. V., Kolesneva, E. V., Knyazev, D. M., and Volotovskii, I. D. (2007) Fiziol. Rast., 54, 847–855.

    Google Scholar 

  9. Neill, S., Bright, J., Desikan, R., Hancock, J., Harrison, J., and Wilson, I. (2008) J. Exp. Bot., 59, 25–35.

    Article  PubMed  CAS  Google Scholar 

  10. Glyan’ko, A. K., Mitanova, N. B., and Stepanov, A. V. (2009) Zh. Stress-Fiziol. Biokhim., 5, 34–52.

    Google Scholar 

  11. Hong, J.-K., Yun, B-W., Kang, J-G., Raja, M. U., Kwon, E., Sorhagen, K., Chu, C., Wand, Y., and Loake, G. J. (2008) J. Exp. Bot., 59, 147–154.

    Article  PubMed  CAS  Google Scholar 

  12. Beligni, M. V., and Lamattina, L. (2000) Planta, 210, 215–221.

    Article  PubMed  CAS  Google Scholar 

  13. Gueto, M., Hernandez-Perera, O., Martin, R., Bentura, M. L., Rodrigo, J., Lamas, S., and Golvano, M. P. (1996) FEBS Lett., 398, 159–164.

    Article  Google Scholar 

  14. Guo, F. Q., and Crawford, N. M. (2005) Plant Cell, 17, 3436–3450.

    Article  PubMed  CAS  Google Scholar 

  15. Chandok, M. R., Ytterberg, A. J., van Wijk, K. J., and Klessig, D. F. (2003) Cell, 113, 469–482.

    Article  PubMed  CAS  Google Scholar 

  16. Guo, F. Q., Okamoto, M., and Crawford, N. M. (2003) Science, 303, 100–103.

    Article  Google Scholar 

  17. Sakihama, Y., Nakamura, S., and Yamasaki, H. (2002) Plant Cell Physiol., 43, 290–297.

    Article  PubMed  CAS  Google Scholar 

  18. Stohr, C., Strube, F., Marx, G., Ullrich, W. R., and Rockel, P. (2001) Planta, 212, 835–841.

    Article  PubMed  CAS  Google Scholar 

  19. Bethke, P. C., Badger, M. R., and Jones, R. L. (2004) Plant Cell, 16, 332–341.

    Article  PubMed  CAS  Google Scholar 

  20. Tarchevskii, I. A. (2001) Metabolism of Plants under Stress [in Russian], Fen, Kazan.

    Google Scholar 

  21. Basra, A. S., Dhawan, A. K., and Goyal, S. S. (2002) Planta, 215, 855–861.

    Article  PubMed  CAS  Google Scholar 

  22. Gay, C., and Gebicki, J. M. (2000) Anal. Biochem., 284, 217–220.

    Article  PubMed  CAS  Google Scholar 

  23. Viktorova, L. V., Maksyutova, N. N., Trifonova, T. V., and Andrianov, V. V. (2010) Biochemistry (Moscow), 75, 95–100.

    Article  CAS  Google Scholar 

  24. Senchuk, V. V., and Grintsevich, V. E. (2004) Biochemistry (Moscow), 69, 201–207.

    Article  Google Scholar 

  25. Bradford, M. M. (1976) Anal. Biochem., 72, 248–254.

    Article  PubMed  CAS  Google Scholar 

  26. Vanin, A. F., Mordvintcev, P. I., and Kleschev, A. L. (1984) Stud. Biophys., 107, 135–143.

    Google Scholar 

  27. Ingrem, D. (1972) Electron Spin Resonance in Biology [Russian translation], Mir, Moscow.

    Google Scholar 

  28. Groppa, M. D., Rosales, E. P., Iannone, M. F., and Benavides, M. P. (2008) Phytochemistry, 69, 2609–2615.

    Article  PubMed  CAS  Google Scholar 

  29. Shirshova, E. D., Klyuikova, A. I., and Alekhina, N. D. (1986) Biol. Nauki, 1, 76–82.

    Google Scholar 

  30. Polevoi, V. V. (1989) Physiology of Plants [in Russian], Vysshaya Shkola, Moscow.

    Google Scholar 

  31. Klimenko, S. B., Peshkova, A. A., and Dorofeev, N. V. (2006) Zh. Stress-Fiziol. Biokhim., 2, 50–55.

    Google Scholar 

  32. Galangau, F., Daniel-Vedele, F., Moureaux, T., Dorbe, M.-F., Leydecker, M.-T., and Caboche, M. (1988) Plant Physiol., 88, 383–388.

    Article  PubMed  CAS  Google Scholar 

  33. Kaiser, W. M., and Huber, S. C. (2001) J. Exp. Bot., 52, 1981–1989.

    Article  PubMed  CAS  Google Scholar 

  34. Peive, Ya. V., Ivanova, N. N., Ovcharenko, G. A., and Shirshinskaya, M. G. (1975) Fiziol. Rast., 22, 527–536.

    CAS  Google Scholar 

  35. Deng, M., Moureaux, T., and Caboche, M. (1989) Plant Physiol., 91, 304–309.

    Article  PubMed  CAS  Google Scholar 

  36. Rayapureddi, J. P., Kattamuri, C., Chan, F. H., and Hegde, R. S. (2005) Biochemistry, 44, 751–758.

    Article  PubMed  CAS  Google Scholar 

  37. Lillo, C., Meyer, C., Lea, U. S., Provan, F., and Oltedai, S. (2004) J. Exp. Bot., 55, 1275–1282.

    Article  PubMed  CAS  Google Scholar 

  38. Dean, J. V., and Harper, J. E. (1988) Plant Physiol., 88, 389–395.

    Article  PubMed  CAS  Google Scholar 

  39. Boissom, M., Mondon, K., and Torney, V. (2005) Theor. Appl. Cenet., 110, 932–940.

    Article  Google Scholar 

  40. Nelson, R. S., Streit, L., and Harper, J. E. (1986) Plant Physiol., 80, 72–76.

    Article  PubMed  CAS  Google Scholar 

  41. Zhao, M.-G., Chen, L., Zhang, L.-L., and Zhang, W.-H. (2009) Plant Physiol., 151, 755–767.

    Article  PubMed  CAS  Google Scholar 

  42. Scheible, W.-R., Gonzalez-Fontes, A., Lauerer, M., Rober, B. M., Caboche, M., and Stitt, M. (1997) Plant Cell, 9, 783–798.

    Article  PubMed  CAS  Google Scholar 

  43. Meyer, C., Lea, U. S., Provan, F., Kaiser, W. M., and Lillo, C. (2005) Photosyn. Res., 83, 181–189.

    Article  PubMed  CAS  Google Scholar 

  44. Rosales, E. P., Iannone, M. F., Groppa, M. D., and Benavides, M. P. (2011) Plant Physiol. Biochem., 49, 124–130.

    Article  PubMed  CAS  Google Scholar 

  45. Vanin, A. F., Svistunenko, D. A., Mikoyan, V. D., Serezhenkov, V. A., Fryer, M. J., Baker, N. R., and Cooper, C. E. (2004) J. Biol. Chem., 279, 24100–24107.

    Article  PubMed  CAS  Google Scholar 

  46. Andreeva, V. A. (1988) The Enzyme Peroxidase [in Russian], Nauka, Moscow.

    Google Scholar 

  47. Minibayeva, F., Kolesnikov, O., Chasov, A., Beckett, R. P., Luthje, S., Vylegzhanina, N., Buck, F., and Bottger, M. (2009) Plant Cell Environ., 32, 497–508.

    Article  PubMed  CAS  Google Scholar 

  48. Peive, Ya. V., Ivanova, N. N., and Drobysheva, N. I. (1972) Fiziol. Rast., 19, 340–347.

    CAS  Google Scholar 

  49. Araiso, T., and Dunford, H. B. (1980) Biochem. Biophys. Res. Commun., 94, 1177–1182.

    Article  PubMed  CAS  Google Scholar 

  50. Rogozhin, V. V. (2004) Peroxidase as the Component of Antioxidant System of Living Organisms [in Russian], Giord, St. Petersburg.

    Google Scholar 

  51. Vliet, A., Eiserich, J. P., Halliwell, B., and Cross, C. E. (1997) J. Biol. Chem., 272, 7617–7625.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. V. Minibayeva.

Additional information

Original Russian Text © E. I. Galeeva, T. V. Trifonova, A. A. Ponomareva, L. V. Viktorova, F. V. Minibayeva, 2012, published in Biokhimiya, 2012, Vol. 77, No. 4, pp. 512–520.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Galeeva, E.I., Trifonova, T.V., Ponomareva, A.A. et al. Nitrate reductase from Triticum aestivum leaves: Regulation of activity and possible role in production of nitric oxide. Biochemistry Moscow 77, 404–410 (2012). https://doi.org/10.1134/S0006297912040128

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297912040128

Key words

Navigation