Skip to main content
Log in

Ceramides inhibit phospholipase D-dependent insulin signaling in liver cells of old rats

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Ceramides are a novel class of biologically active molecules involved in the regulation of different signaling pathways. Ceramide is involved in regulation of the phospholipase D (PLD) activity and development of cell resistance to insulin. In this work, we have studied age-related features of insulin regulation of PLD activity and glucose metabolism in intact cells and modeled their resistance to insulin by exogenous ceramide and palmitic acid. Contents of ceramides and of free fatty acids (FFA) are found to increase with age, as well as on incubation of liver cells of young rats in the presence of the ceramide precursor palmitic acid. Under these conditions, the ability of insulin to activate PLD, the cell uptake of glucose, and glycogen synthesis sharply decreased. On incubation of hepatocytes of young animals in the presence of exogenous C2-ceramide, the contents of endogenous ceramides increased but not the contents of FFAs and of neutral lipids. These events were accompanied by suppression of the insulin-induced production of phosphatidylethanol (a result of ethanol transphosphatidylation by PLD), glucose uptake, and glycogen synthesis. Incubation of insulin-resistant liver cells of young rats and also of hepatocytes of old rats in the presence of myriocin (an inhibitor of the de novo synthesis of ceramide) was associated with a decrease in ceramide content in the cells and an increase in the cell sensitivity to insulin. The findings indicate an important role of ceramide in disturbance of insulin signaling due to inhibition of the PLD-dependent link in the liver cells of old animals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

DAG:

diacylglycerol

FFA:

free fatty acids

GLUT:

glucose transporter

PC:

phosphatidylcholine

PET:

phosphatidylethanol

PI3K:

phosphatidylinositol-3 kinase

PKC:

protein kinase C

PLD:

phospholipase D

16:0:

palmitic acid

References

  1. Lingtile, S. A., Oakley, J. I., and Nikolova-Karakashian, M. N. (2000) Mech. Ageing Dev., 120, 111–125.

    Article  Google Scholar 

  2. Kavok, N. S., Krasilnikova, O. A., and Babenko, N. A. (2003) Exp. Gerontol., 38, 441–447.

    Article  PubMed  CAS  Google Scholar 

  3. Venable, M. E., Lee, J. Y., Smyth, M. J., Bielawska, A., and Obeid, L. M. (1995) J. Biol. Chem., 270, 30701–30708.

    Article  PubMed  CAS  Google Scholar 

  4. Babenko, N. A., and Shakhova, E. G. (2006) Exp. Gerontol., 41, 32–39.

    Article  PubMed  CAS  Google Scholar 

  5. Babenko, N. A., and Semenova, Y. A. (2010) Exp. Gerontol., 45, 375–380.

    Article  PubMed  CAS  Google Scholar 

  6. Cuttler, R. G., and Mattson, M. P. (2001) Mech. Ageing Dev., 122, 895–908.

    Article  Google Scholar 

  7. Yang, G., Badeanlou, L., Bielawski, J., Roberts, A. J., Hannun, Y. A., and Samad, F. (2009) J. Physiol. Endocrinol. Metab., 297, E211–E224.

    Article  CAS  Google Scholar 

  8. Turinsky, J., O’sullivan, D. M., and Bayly, B. P. (1990) J. Biol. Chem., 265, 16880–16885.

    PubMed  CAS  Google Scholar 

  9. Hoffman, J. M., Standaert, M. L., Nair, G. P., and Farese, R. V. (1991) Biochemistry, 30, 3315–3322.

    Article  PubMed  CAS  Google Scholar 

  10. Slaaby, R., Du, G., Altshuller, Y. M., Frohman, M. A., and Seedorf, K. (2000) Biochem. J., 351, 613–619.

    Article  PubMed  CAS  Google Scholar 

  11. Donchenko, V., Zannetti, A., and Baldini, P. M. (1994) Biochim. Biophys. Acta, 1222, 492–500.

    Article  PubMed  CAS  Google Scholar 

  12. Karnam, P., Standaert, M. L., Galloway, L., and Farese, R. V. (1997) J. Biol. Chem., 272, 6136–6140.

    Article  PubMed  CAS  Google Scholar 

  13. Farese, R. V. (2002) Am. J. Physiol. Endocrinol. Metab., 283, E1–E11.

    PubMed  CAS  Google Scholar 

  14. Kellett, G. L., and Brot-Laroche, E. (2005) Diabetes, 54, 3056–3062.

    Article  PubMed  CAS  Google Scholar 

  15. Zaid, H., Antonescu, C. N., Randhawa, V. K., and Klip, A. (2008) Biochem. J., 413, 201–215.

    Article  PubMed  CAS  Google Scholar 

  16. Hannun, Y. A., and Obeid, L. M. (2002) J. Biol. Chem., 277, 25847–25850.

    Article  PubMed  CAS  Google Scholar 

  17. Singh, I. N., Stromberg, L. M., Bourgoin, S. G., Sciorra, V. A., Morris, A. J., and Brindley, D. N. (2001) Biochemistry, 40, 11227–11233.

    Article  PubMed  CAS  Google Scholar 

  18. Abousalham, A., Liossis, C., O’Brien, L., and Brindley, D. N. (1997) J. Biol. Chem., 272, 1069–1075.

    Article  PubMed  CAS  Google Scholar 

  19. Gidwani, A., Brown, H. A., Holowka, D., and Baird, B. (2003) J. Cell. Sci., 116, 3177–3187.

    Article  PubMed  CAS  Google Scholar 

  20. Petrenko, A. Y., Sukach, A. N., and Roslyakov, A. D. (1991) Biokhimiya, 56, 1647–1651.

    CAS  Google Scholar 

  21. Chavez, J. A., Holland, W. L., Bar, J., Sandhoff, K., and Summers, S. A. (2005) J. Biol. Chem., 280, 20148–20153.

    Article  PubMed  CAS  Google Scholar 

  22. Blair, A. S., Hajduc, J. E., Litherland, G. J., and Hundal, H. S. (1999) J. Biol. Chem., 274, 36293–36299.

    Article  PubMed  CAS  Google Scholar 

  23. Billah, M. M., and Anthes, J. C. (1990) Biochem. J., 269, 281–291.

    PubMed  CAS  Google Scholar 

  24. Moehren, G., Gustavsson, L., and Hoek, J. B. (1994) J. Biol. Chem., 269, 838–848.

    PubMed  CAS  Google Scholar 

  25. Exton, J. H. (2002) FEBS Lett., 531, 58–61.

    Article  PubMed  CAS  Google Scholar 

  26. Huang, D. P., Altshuller, Y. M., Hou, J. C., Pessin, J. E., and Frohman, M. A. (2005) Mol. Biol. Cell, 16, 2614–2623.

    Article  PubMed  CAS  Google Scholar 

  27. Bligh, E. G., and Dyer, W. J. (1959) Can. J. Biochem. Physiol., 37, 911–917.

    Article  PubMed  CAS  Google Scholar 

  28. March, J. B., and Weinstein, D. B. (1966) J. Lipid Res., 7, 574–580.

    Google Scholar 

  29. Kates, M. (1975) Techniques of Lipidology [Russian translation], Mir, Moscow.

    Google Scholar 

  30. Lauter, C. J., and Trams, E. G. (1962) J. Lipid Res., 3, 136–138.

    CAS  Google Scholar 

  31. Holland, W. L., and Summers, S. A. (2008) Endocr. Rev., 29, 381–402.

    Article  PubMed  CAS  Google Scholar 

  32. Lyn-Cook, L. E., Jr., Lawton, M., Tong, M., Silbermann, E., Longato, L., Jiao, P., Mark, P., Wands, J. R., Xu, H., and de la Monte, S. M. (2009) J. Alzheimer’s Dis., 16, 715–729.

    Google Scholar 

  33. Holland, W. L., Brozinick, J. T., Wang, L. P., Hawkins, E. D., Sargent, K. M., Liu, Y., Narra, K., Hoehn, K. L., Knotts, T. A., Siesky, A., Nelson, D. H., Rathanasis, S. K., Fontenot, G. K., Birnbaum, M. J., and Summers, S. A. (2007) Cell. Metab., 5, 167–179.

    Article  PubMed  CAS  Google Scholar 

  34. Farese, R. V. (2001) Exp. Biol. Med., 226, 283–295.

    CAS  Google Scholar 

  35. Venable, M. E., Blobe, G. C., and Obeid, L. M. (1994) J. Biol. Chem., 269, 26040–26044.

    PubMed  CAS  Google Scholar 

  36. Webb, L. M., Arnholt, A. T., and Venable, M. E. (2010) Mol. Cell. Biochem., 337, 153–158.

    Article  PubMed  CAS  Google Scholar 

  37. Gomez-Munoz, A., Martin, A., O’Brien, L., and Brindley, D. N. (1994) J. Biol. Chem., 269, 8937–8943.

    PubMed  CAS  Google Scholar 

  38. Kooijman, E. E., Chupin, V., de Kruijff, B., and Burger, K. N. (2003) Traffic, 4, 162–174.

    Article  PubMed  CAS  Google Scholar 

  39. Mizutani, T., Nakashima, S., and Nozawa, Y. (1998) Mech. Ageing Dev., 105, 151–172.

    Article  PubMed  CAS  Google Scholar 

  40. Mebarek, S., Komati, H., Naro, F., Zeiller, C., Alvisi, M., Lagarde, M., Prigent, A.-F., and Nemoz, G. (2007) J. Cell Sci., 120, 407–416.

    Article  PubMed  CAS  Google Scholar 

  41. Chavez, J. A., Knotts, T. A., Wang, L. P., Li, G., Dobrowsky, R. T., Florant, G. L., and Summers, S. A. (2003) J. Biol. Chem., 278, 10297–10303.

    Article  PubMed  CAS  Google Scholar 

  42. Kotronen, A., Seppunen-Laakso, T., Westerbacka, J., Kiviluoto, T., Arola, J., Rusk, A. L., Yki-Jrvinen, H., and Oresic, M. (2010) Obesity (Silver Spring), 18, 937–944.

    Article  CAS  Google Scholar 

  43. Ogretmen, B., Pettus, B. J., Rossi, M. J., Wood, R., Usta, J., Szulc, Z., Bielawska, A., Obeid, L. M., and Hannun, Y. A. (2002) J. Biol. Chem., 277, 12960–12969.

    Article  PubMed  CAS  Google Scholar 

  44. Grether-Beck, S., Timmer, A., Felsner, I., Brenden, H., Brammertz, D., and Krutmann, J. (2005) J. Invest. Dermatol., 125, 545–553.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. A. Babenko.

Additional information

Original Russian Text © N. A. Babenko, V. S. Kharchenko, 2012, published in Biokhimiya, 2012, Vol. 77, No. 2, pp. 223–230.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Babenko, N.A., Kharchenko, V.S. Ceramides inhibit phospholipase D-dependent insulin signaling in liver cells of old rats. Biochemistry Moscow 77, 180–186 (2012). https://doi.org/10.1134/S0006297912020095

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297912020095

Key words

Navigation