Biochemistry (Moscow)

, Volume 76, Issue 13, pp 1391–1401 | Cite as

Horseradish peroxidase: Modulation of properties by chemical modification of protein and heme



Horseradish peroxidase (HRP) is one of the most studied enzymes of the plant peroxidase superfamily. HRP is also widely used in different bioanalytical applications and diagnostic kits. The methods of genetic engineering and protein design are now widely used to study the catalytic mechanism and to improve properties of the enzyme. Here we review the results of another approach to HRP modification—through the chemical modification of amino acids or prosthetic group of the enzyme. Computer models of HRPs with modified hemes are in good agreement with the experimental data.

Key words

horseradish peroxidase HRP heme chemical modification catalytic properties stability computer modeling 





bifunctional reagent




horseradish peroxidase isozyme C


monofunctional reagent




native HRP






reconstructed HRP


solvent accessible surface area


synthetic heme derivative


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

10541_2011_9521_MOESM1_ESM.pdf (274 kb)
Supplementary material, approximately 273 KB.


  1. 1.
    Banci, L. (1997) J. Biotechnol., 53, 253–263.PubMedCrossRefGoogle Scholar
  2. 2.
    Welinder, K. G. (1992) Curr. Opin. Struct. Biol., 2, 388–393.CrossRefGoogle Scholar
  3. 3.
    Zhang, S., Zou, J., and Yu, F. (2008) Talanta, 76, 122–127.PubMedCrossRefGoogle Scholar
  4. 4.
    Song, Z., Yuan, R., Chai, Y., Zhuo, Y., Jiang, W., Su, H., Che, X., and Li, J. (2010) Chem. Commun. (Camb.), 46, 6750–6752.Google Scholar
  5. 5.
    Yao, H., and Hu, N. (2010) J. Phys. Chem. B, 114, 3380–3386.PubMedCrossRefGoogle Scholar
  6. 6.
    Shan, D., Li, Q. B., Ding, S. N., Xu, J. Q., Cosnier, S., and Xue, H. G. (2010) Biosens. Bioelectron., 26, 536–541.PubMedCrossRefGoogle Scholar
  7. 7.
    Korkut, S., Keskinler, B., and Erhan, E. (2008) Talanta, 76, 1147–1152.PubMedCrossRefGoogle Scholar
  8. 8.
    Li, J., Wang, Y., Chiu, S. L., and Cline, H. T. (2010) Front. Neural Circuits, 4, 6.PubMedGoogle Scholar
  9. 9.
    Greco, O., Rossiter, S., Kanthou, C., Folkes, L. K., Wardman, P., Tozer, G. M., and Dachs, G. U. (2001) Mol. Cancer Ther., 1, 151–160.PubMedGoogle Scholar
  10. 10.
    Tupper, J., Stratford, M. R., Hill, S., Tozer, G. M., and Dachs, G. U. (2010) Cancer Gene Ther., 17, 420–428.PubMedCrossRefGoogle Scholar
  11. 11.
    Shogren, R. L., Willett, J. L., and Biswas, A. (2009) Carbohydr. Polym., 75, 189–191.CrossRefGoogle Scholar
  12. 12.
    Cruz-Silva, R., Amaro, E., Escamilla, A., Nicho, M. E., Sepulveda-Guzman, S., Arizmendi, L., Romero-Garcia, J., Castillon-Barraza, F. F., and Farias, M. H. (2008) J. Colloid Interface Sci., 328, 263–269.PubMedCrossRefGoogle Scholar
  13. 13.
    Wuhrer, M., Balog, C. I. A., Koeleman, C. A. M., Deelder, A. M., and Hokke, C. H. (2005) Biochim. Biophys. Acta, 1723, 229–239.PubMedCrossRefGoogle Scholar
  14. 14.
    Clarke, J., and Shannon, L. M. (1976) Biochim. Biophys. Acta, 427, 428–442.PubMedGoogle Scholar
  15. 15.
    Veitch, N. C. (2004) Phytochemistry, 65, 249–259.PubMedCrossRefGoogle Scholar
  16. 16.
    Tams, J. W., and Welinder, K. G. (1998) FEBS Lett., 421, 234–236.PubMedCrossRefGoogle Scholar
  17. 17.
    Asad, S., Khajeh, K., and Ghaemi, N. (2010) Appl. Biochem. Biotechnol., 164, 454–463.PubMedCrossRefGoogle Scholar
  18. 18.
    Smith, A. T., Santama, N., Dacey, S., Edwards, M., Bray, R. C., Thorneley, R. N. F., and Burke, J. F. (1990) J. Biol. Chem., 265, 13335–13343.PubMedGoogle Scholar
  19. 19.
    Welinder, K. G. (1979) Eur. J. Biochem., 96, 483–502.PubMedCrossRefGoogle Scholar
  20. 20.
    Schuller, D. J., Ban, N., Huystee, R. B., McPherson, A., and Poulos, T. L. (1996) Structure, 4, 311–321.PubMedCrossRefGoogle Scholar
  21. 21.
    Henriksen, A., Welinder, K. G., and Gajhede, M. (1998) J. Biol. Chem., 273, 2241–2248.PubMedCrossRefGoogle Scholar
  22. 22.
    Ostergaard, L., Teilum, K., Mirza, O., Mattsson, O., Petersen, M., Welinder, K. G., Mundy, J., Gajhede, M., and Henriksen, A. (2000) Plant. Mol. Biol., 44, 231–243.PubMedCrossRefGoogle Scholar
  23. 23.
    Henriksen, A., Mirza, O., Indiani, C., Teilum, K., Smulevich, G., Welinder, K. G., and Gajhede, M. (2001) Protein Sci., 10, 108–115.PubMedCrossRefGoogle Scholar
  24. 24.
    Watanabe, L., de Moura, P. R., Bleicher, L., Nascimento, A. S., Zamorano, L. S., Calvete, J. J., Sanz, L., Perez, A., Bursakov, S., Roig, M. G., Shnyrov, V. L., and Polikarpov, I. (2010) J. Struct. Biol., 169, 226–242.PubMedCrossRefGoogle Scholar
  25. 25.
    Gajhede, M., Schuller, D. J., Henriksen, A., Smith, A. T., and Poulos, T. L. (1997) Nat. Struct. Biol., 4, 1032–1038.PubMedCrossRefGoogle Scholar
  26. 26.
    Haschke, R. H., and Friedhoff, J. M. (1978) Biochem. Biophys. Res. Commun., 80, 1039–1042.PubMedCrossRefGoogle Scholar
  27. 27.
    Ogawa, S., Shiro, Y., and Morishima, I. (1979) Biochem. Biophys. Res. Commun., 90, 674–678.PubMedCrossRefGoogle Scholar
  28. 28.
    Howes, B. D., Feis, A., Raimondi, L., Indiani, C., and Smulevich, G. (2001) J. Biol. Chem., 276, 40704–40711.PubMedCrossRefGoogle Scholar
  29. 29.
    Laberge, M., Huang, Q., Schweitzer-Stenner, R., and Fidy, J. (2003) Biophys. J., 84, 2542–2552.PubMedCrossRefGoogle Scholar
  30. 30.
    Laberge, M., Szigeti, K., and Fidy, J. (2004) Biopolymers, 74, 41–45.PubMedCrossRefGoogle Scholar
  31. 31.
    Szigeti, K., Smeller, L., Osvath, S., Majer, Z., and Fidy, J. (2008) Biochim. Biophys. Acta, 1784, 1965–1974.PubMedGoogle Scholar
  32. 32.
    Huang, Q., Laberge, M., Szigeti, K., Fidy, J., and Schweitzer-Stenner, R. (2003) Biopolymers, 72, 241–248.PubMedCrossRefGoogle Scholar
  33. 33.
    Banci, L., Carloni, P., Diaz, A., and Savellini, G. G. (1996) J. Biol. Inorg. Chem., 1, 264–272.CrossRefGoogle Scholar
  34. 34.
    Berglund, G. I., Carlsson, G. H., Smith, A. T., Szoke, H., Henriksen, A., and Hajdu, J. (2002) Nature, 417, 463–468.PubMedCrossRefGoogle Scholar
  35. 35.
    Singh, N., and Singh, J. (2002) Prep. Biochem. Biotechnol., 32, 127–133.PubMedCrossRefGoogle Scholar
  36. 36.
    Ibrahim, M. S., Ali, H. I., Taylor, K. E., Biswas, N., and Bewtra, J. K. (2001) Water Environ. Res., 73, 165–172.PubMedCrossRefGoogle Scholar
  37. 37.
    Veitch, N. C., and Smith, A. T. (2001) Adv. Inorg. Chem., 51, 107–162.CrossRefGoogle Scholar
  38. 38.
    Ryan, B. J., Carolan, N., and O’Fagain, C. (2006) Trends Biotechnol., 24, 355–363.PubMedCrossRefGoogle Scholar
  39. 39.
    Gazaryan, I. G., Khushpul’yan, D. M., and Tishkov, V. I. (2006) Uspekhi Biol. Khim., 46, 303–322.Google Scholar
  40. 40.
    Rojkova, A. M., Galkin, A. G., Kulakova, L. B., Serov, A. E., Savitsky, P. A., Fedorchuk, V. V., and Tishkov, V. I. (1999) FEBS Lett., 445, 183–188.PubMedCrossRefGoogle Scholar
  41. 41.
    Tishkov, V. I., Galkin, A. G., Marchenko, G. N., Egorova, O. A., Sheluho, D. V., Kulakova, L. B., Dementieva, L. A., and Egorov, A. M. (1993) Biochem. Biophys. Res. Commun., 192, 976–981.PubMedCrossRefGoogle Scholar
  42. 42.
    Serov, A. E., Popova, A. S., Fedorchuk, V. V., and Tishkov, V. I. (2002) Biochem. J., 367, 841–847.PubMedCrossRefGoogle Scholar
  43. 43.
    Tishkov, V. I., Galkin, A. G., Fedorchuk, V. V., Savitsky, P. A., Rojkova, A. M., Gieren, H., and Kula, M. R. (1999) Biotechnol. Bioeng., 64, 187–193.PubMedCrossRefGoogle Scholar
  44. 44.
    Tishkov, V. I., and Popov, V. O. (2004) Biochemistry (Moscow), 69, 1252–1267.Google Scholar
  45. 45.
    Tishkov, V. I., and Khoronenkova, S. V. (2005) Biochemistry (Moscow), 70, 40–54.Google Scholar
  46. 46.
    Tishkov, V. I., and Popov, V. O. (2006) Biomol. Eng., 23, 89–110.PubMedCrossRefGoogle Scholar
  47. 47.
    Tishkov, V. I., Savin, S. S., and Khoronenkova, S. V. (2008) Russ. Chem. Bull., 57, 1033–1041.CrossRefGoogle Scholar
  48. 48.
    Lin, Z., Thorsen, T., and Arnold, F. H. (1999) Biotechnol. Prog., 15, 467–471.PubMedCrossRefGoogle Scholar
  49. 49.
    Morawski, B., Lin, Z., Cirino, P., Joo, H., Bandara, G., and Arnold, F. H. (2000) Protein Eng., 13, 377–384.PubMedCrossRefGoogle Scholar
  50. 50.
    Morawski, B., Quan, S., and Arnold, F. H. (2001) Biotechnol. Bioeng., 76, 99–107.PubMedCrossRefGoogle Scholar
  51. 51.
    Smulevich, G., Paoli, M., Burke, J. F., Sanders, S. A., Thorneley, R. N. F., and Smith, A. T. (1994) Biochemistry, 33, 7398–7407.PubMedCrossRefGoogle Scholar
  52. 52.
    Rodriguez-Lopez, J. N., Smith, A. T., and Thorneley, R. N. F. (1996) J. Biol. Chem., 271, 4023–4030.PubMedCrossRefGoogle Scholar
  53. 53.
    Newmyer, S. L., and deMontellano, P. R. O. (1996) J. Biol. Chem., 271, 14891–14896.PubMedCrossRefGoogle Scholar
  54. 54.
    Smith, A. T., Sanders, S. A., Thorneley, R. N., Burke, J. F., and Bray, R. R. (1992) Eur. J. Biochem., 207, 507–519.PubMedCrossRefGoogle Scholar
  55. 55.
    Veitch, N. C., Williams, R. J., Bray, R. C., Burke, J. F., Sanders, S. A., Thorneley, R. N., and Smith, A. T. (1992) Eur. J. Biochem., 207, 521–531.PubMedCrossRefGoogle Scholar
  56. 56.
    Heering, H. A., Smith, A. T., and Smulevich, G. (2002) Biochem. J., 363, 571–579.PubMedCrossRefGoogle Scholar
  57. 57.
    Gazaryan, I. G., Doseeva, V. V., Galkin, A. G., and Tishkov, V. I. (1994) FEBS Lett., 354, 248–250.PubMedCrossRefGoogle Scholar
  58. 58.
    Tanaka, M., Nagano, S., Ishimori, K., and Morishima, I. (1997) Biochemistry, 36, 9791–9798.PubMedCrossRefGoogle Scholar
  59. 59.
    Nagano, S., Tanaka, M., Watanabe, Y., and Morishima, I. (1995) Biochem. Biophys. Res. Commun., 207, 417–423.PubMedCrossRefGoogle Scholar
  60. 60.
    Nagano, S., Tanaka, M., Ishimori, K., Watanabe, Y., and Morishima, I. (1996) Biochemistry, 35, 14251–14258.PubMedCrossRefGoogle Scholar
  61. 61.
    Newmyer, S. L., Sun, J., Loehr, T. M., and deMontellano, P. R. O. (1996) Biochemistry, 35, 12788–12795.PubMedCrossRefGoogle Scholar
  62. 62.
    Veitch, N. C., Gao, Y., Smith, A. T., and White, C. G. (1997) Biochemistry, 36, 14751–14761.PubMedCrossRefGoogle Scholar
  63. 63.
    Veitch, N. C., Williams, R. J. P., Bone, N. M., Burke, J. F., and Smith, A. T. (1995) Eur. J. Biochem., 233, 650–658.PubMedCrossRefGoogle Scholar
  64. 64.
    Howes, B. D., Heering, H. A., Roberts, T. O., Schneider-Belhadadd, F., Smith, A. T., and Smulevich, G. (2001) Biopolymers, 62, 261–267.PubMedCrossRefGoogle Scholar
  65. 65.
    Gazaryan, I. G., Chubar, T. A., Ignatenko, O. V., Mareeva, E. A., Orlova, M. A., Kapeliuch, Y. L., Savitsky, P. A., Rojkova, A. M., and Tishkov, V. I. (1999) Biochem. Biophys. Res. Commun., 262, 297–301.PubMedCrossRefGoogle Scholar
  66. 66.
    Ignatenko, O. V., Gazaryan, I. G., Mareeva, E. A., Chubar, T. A., Fechina, V. A., Savitsky, P. A., Rojkova, A. M., and Tishkov, V. I. (2000) Biochemistry (Moscow), 65, 583–587.Google Scholar
  67. 67.
    Howes, B. D., Brissett, N. C., Doyle, W. A., Smith, A. T., and Smulevich, G. (2005) FEBS J., 272, 5514–5521.PubMedCrossRefGoogle Scholar
  68. 68.
    Ryan, B. J., O’Connell, M. J., and O’Fagain, C. (2008) Biochimie, 90, 1389–1396.PubMedCrossRefGoogle Scholar
  69. 69.
    Urrutigoity, M., Baboulene, M., and Lattes, A. (1991) Bioorg. Chem., 19, 66–76.CrossRefGoogle Scholar
  70. 70.
    Urrutigoity, M., Baboulene, M., Lattes, A., Souppe, J., and Seris, J. L. (1991) Biochim. Biophys. Acta, 1079, 209–213.PubMedCrossRefGoogle Scholar
  71. 71.
    Bhattacharyya, D. K., Bandyopadhyay, U., and Banerjee, R. K. (1993) J. Biol. Chem., 268, 22292–22298.PubMedGoogle Scholar
  72. 72.
    O’Brien, A. M. (1997) Chemical Modification and Characterization of Horseradish Peroxidase and Its Derivatives for Environmental Applications: PhD thesis, Dublin City University, Ireland.Google Scholar
  73. 73.
    Ryan, O., Smyth, M. R., and O’Fagain, C. O. (1994) Enzym. Microb. Technol., 16, 501–505.CrossRefGoogle Scholar
  74. 74.
    Miland, E., Smyth, M. R., and O’Fagain, C. (1996) Enzym. Microb. Technol., 19, 63–67.CrossRefGoogle Scholar
  75. 75.
    Miland, E., Smyth, M. R., and O’Fagain, C. (1996) Enzym. Microb. Technol., 19, 242–249.CrossRefGoogle Scholar
  76. 76.
    Garcia, D., Ortega, F., and Marty, J. L. (1998) Biotechnol. Appl. Biochem., 27, 49–54.Google Scholar
  77. 77.
    O’Brien, A. M., O’Fagain, C., Nielsen, P. F., and Welinder, K. G. (2001) Biotechnol. Bioeng., 76, 277–284.PubMedCrossRefGoogle Scholar
  78. 78.
    Liu, J. Z., Song, H. Y., Weng, L. P., and Ji, L. N. (2002) J. Mol. Catal. B: Enzym., 18, 225–232.CrossRefGoogle Scholar
  79. 79.
    O’Brien, A. M., Smith, A. T., and O’Fagain, C. (2003) Biotechnol. Bioeng., 81, 233–240.PubMedCrossRefGoogle Scholar
  80. 80.
    Song, H. Y., Yao, J. H., Liu, J. Z., Zhou, S. J., Xiong, Y. H., and Ji, L. N. (2005) Enzym. Microb. Technol., 36, 605–611.CrossRefGoogle Scholar
  81. 81.
    Mogharrab, N., and Ghourchian, H. (2005) Electrochem. Commun., 7, 466–471.CrossRefGoogle Scholar
  82. 82.
    Liu, J. Z., Wang, T. L., Huang, M. T., Song, H. Y., Weng, L. P., and Ji, L. N. (2006) Protein Eng. Des. Sel., 19, 169–173.PubMedCrossRefGoogle Scholar
  83. 83.
    Hassani, L., Ranjbar, B., Khajeh, K., Naderi-Manesh, H., Naderi-Manesh, M., and Sadeghi, M. (2006) Enzym. Microb. Technol., 38, 118–125.CrossRefGoogle Scholar
  84. 84.
    Mogharrab, N., Ghourchian, H., and Amininasab, M. (2007) Biophys. J., 92, 1192–1203.PubMedCrossRefGoogle Scholar
  85. 85.
    Teale, F. W. J. (1959) Biochim. Biophys. Acta, 35, 543.PubMedCrossRefGoogle Scholar
  86. 86.
    Torres, E., Baeza, A., and Vazquez-Duhalt, B. (2002) J. Mol. Catal. B: Enzym., 19/20, 437–441.CrossRefGoogle Scholar
  87. 87.
    Ator, M. A., and deMontellano, P. R. O. (1987) J. Biol. Chem., 262, 1542–1551.PubMedGoogle Scholar
  88. 88.
    Ator, M. A., David, S. K., and deMontellano, P. R. O. (1987) J. Biol. Chem., 262, 14954–14960.PubMedGoogle Scholar
  89. 89.
    DeMontellano, P. R. O., David, S. K., Ator, M. A., and Tew, D. (1988) Biochemistry, 27, 5470–5476.CrossRefGoogle Scholar
  90. 90.
    Chen, Y. R., Deterding, L. J., Tomer, K. B., and Mason, R. P. (2000) Biochemistry, 39, 4415–4422.PubMedCrossRefGoogle Scholar
  91. 91.
    Huang, L. S., Colas, C., and deMontellano, P. R. O. (2004) JACS, 126, ai]12865–12873.CrossRefGoogle Scholar
  92. 92.
    Strickla, E. H. (1968) Biochim. Biophys. Acta, 151, 70.Google Scholar
  93. 93.
    Jonen, H. G., Werringloer, J., Prough, R. A., and Estabrook, R. W. (1982) J. Biol. Chem., 257, 4404–4411.PubMedGoogle Scholar
  94. 94.
    Ringe, D., Petsko, G. A., Kerr, D. E., and deMontellano, P. R. O. (1984) Biochemistry, 23, 2–4.PubMedCrossRefGoogle Scholar
  95. 95.
    Deissero, A., and Dounce, A. L. (1970) Physiol. Rev., 50, 319.Google Scholar
  96. 96.
    Demontellano, P. R. O., and Kerr, D. E. (1983) J. Biol. Chem., 258, 558–563.Google Scholar
  97. 97.
    Feng, J. Y., Liu, J. Z., and Ji, L. N. (2008) Biochimie, 90, 1337–1346.PubMedCrossRefGoogle Scholar
  98. 98.
    Song, H. Y., Liu, J. Z., Weng, L. P., and Ji, L. N. (2009) J. Mol. Catal. B: Enzym., 57, 48–54.CrossRefGoogle Scholar
  99. 99.
    Ugarova, N. N., Savitski, A. P., and Berezin, I. V. (1981) Biochim. Biophys. Acta, 662, 210–219.PubMedGoogle Scholar
  100. 100.
    Chattopadhyay, K., and Mazumdar, S. (2000) Biochemistry, 39, 263–270.PubMedCrossRefGoogle Scholar
  101. 101.
    Adak, S., and Banerjee, R. K. (1998) Biochem. J., 334, 51–56.PubMedGoogle Scholar
  102. 102.
    Ryabov, A. D., Goral, V. N., Gorton, L., and Csoregi, E. (1999) Chem. Eur. J., 5, 961–967.CrossRefGoogle Scholar
  103. 103.
    Dauber-Osguthorpe, P., Roberts, V. A., Osguthorpe, D. J., Wolff, J., Genest, M., and Hagler, A. T. (1988) Proteins: Struct. Func. Gen., 4, 31–47.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  • G. S. Zakharova
    • 1
    • 2
  • I. V. Uporov
    • 3
  • V. I. Tishkov
    • 1
    • 2
    • 3
  1. 1.Bach Institute of BiochemistryRussian Academy of SciencesMoscowRussia
  2. 2.Innovations and High Technologies MSU Ltd.MoscowRussia
  3. 3.Chemical FacultyLomonosov Moscow State UniversityMoscowRussia

Personalised recommendations