Skip to main content
Log in

Supramolecular complexes of the Agrobacterium tumefaciens virulence protein VirE2

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Virulence protein VirE2 from Agrobacterium tumefaciens is involved in plant infection by transferring a fragment of agrobacterial Ti plasmid ssT-DNA in complex with VirE2-VirD2 proteins into the plant cell nucleus. The VirE2 protein interactions with ssDNA and formation of VirE2 protein complexes in vitro and in silico have been studied. Using dynamic light scattering we found that purified recombinant protein VirE2 exists in buffer solution in the form of complexes of 2–4 protein molecules of 12–18 nm size. We used computer methods to design models of complexes consisting of two and four individual VirE2 proteins, and their dimensions were estimated. Dimensions of VirE2 complexes with ssDNA (550 and 700 nucleotide residues) were determined using transmission electron microscopy and dynamic light scattering. We found that in vitro, upon interaction with ssDNA recombinant protein, VirE2 is able to alter conformation of the latter by shortening the initial length of the ssDNA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

a.a.:

amino acid residue

bp:

base pair

DLS:

dynamic light scattering

dsDNA:

double-stranded DNA

ssDNA:

single-stranded DNA

T-DNA:

transfer DNA

TEM:

transmission electron microscopy

References

  1. Gelvin, S. B. (2009) Plant Physiol., 150, 1665–1676.

    Article  PubMed  CAS  Google Scholar 

  2. Alvarez-Martinez, C. E., and Christie, P. J. (2009) Microb. Mol. Biol. Rev., 73, 775–808.

    Article  CAS  Google Scholar 

  3. Kunik, T., Tzfira, T., Kapulnik, Y., Gafni, Y., Dingwall, C., and Citovsky, V. (2001) Proc. Natl. Acad. Sci. USA, 98, 1871–1876.

    Article  PubMed  CAS  Google Scholar 

  4. Sundberg, C., Meek, L., Carroll, K., Das, A., and Ream, W. (1996) J. Bacteriol., 78, 1207–1212.

    Google Scholar 

  5. Mysori, R. S., Bassuner, D., Deng, X. B., Darfinian, N. S., Motchoulski, A., and Ream, W. (1998) MPMI, 11, 662–683.

    Google Scholar 

  6. Chen, L., Li, C., and Nester, E. (2000) Proc. Natl. Acad. Sci. USA, 97, 7545–7550.

    Article  PubMed  CAS  Google Scholar 

  7. Citovsky, V. C., Wong, M. L., and Zambryski, P. (1989) Proc. Natl. Acad. Sci. USA, 86, 1193–1197.

    Article  PubMed  CAS  Google Scholar 

  8. Christie, P. J., Ward, J. E., Winans, S. C., and Nester, E. W. (1988) J. Bacteriol., 170, 2559–2667.

    Google Scholar 

  9. Volokhina, I. V., Sazonova, I. A., Velikov, V. A., and Chumakov, M. I. (2005) Microbiol. Res., 160, 67–73.

    Article  PubMed  CAS  Google Scholar 

  10. Dumas, F., Duckely, M., Pelczar, P., van Gelder, P., and Hohn, B. (2001) Proc. Natl. Acad. Sci. USA, 98, 485–490.

    Article  PubMed  CAS  Google Scholar 

  11. Chumakov, M. I., Mazilov, S. I., Gusev, Yu. S., and Volokhina, I. V. (2010) Biochemistry (Moscow). Suppl. Ser. A. Membr. Cell Biol., 4, 358–362.

    Article  Google Scholar 

  12. Laemmli, U. K. (1970) Nature, 227, 680–685.

    Article  PubMed  CAS  Google Scholar 

  13. Goldenkova, I. V., Musijchuck, K. A., and Piruzjan, E. S. (2003) Mol. Biol. (Moscow), 37, 356–364.

    Article  CAS  Google Scholar 

  14. Kochetov, A. V., Titov, S. E., Kolodyazhnaya, Ya. S., Trifonov, E. A., Romanova, A. V., Komarova, M. L., Koval’, M. L., and Shumnyi, V. K. (2004) Genetika, 40, 282–285.

    PubMed  CAS  Google Scholar 

  15. Macindoe, G., Mavridis, L., Venkatraman, V., Devignes, M.-D., and Ritchie, D. W. (2010) Nucleic Acids Res., 38, 445–449.

    Article  Google Scholar 

  16. Dym, O., Albeck, S., Unger, T., Jacobovitch, J., Branzburg, A., Michael, Y., Frenkiel-Krispin, D., Wolf, S., and Elbaum, M. (2008) Proc. Natl. Acad. Sci. USA, 105, 11170–11175.

    Article  PubMed  CAS  Google Scholar 

  17. Abu-Arish, A., Frenkiel-Krispin, D., Fricke, T., Tzfira, T., Citovsky, V., Wolf, S., and Elbaum, M. (2004) J. Biol. Chem., 279, 25359–25363.

    Article  PubMed  CAS  Google Scholar 

  18. Frenkiel-Krispin, D., Wolf, S. G., Albeck, S., Unger, T., Peleg, Y., Jacobovitch, J., Michael, Y., Daube, S., Sharon, M., Robinson, C. V., Svergun, D. I., Fass, D., Tzfira, T., and Elbaum, M. (2007) J. Biol. Chem., 282, 3458–3464.

    Article  PubMed  CAS  Google Scholar 

  19. Duckely, M., and Hohn, B. (2003) FEMS Microbiol. Lett., 223, 1–6.

    Article  PubMed  CAS  Google Scholar 

  20. Citovsky, V., Guralnik, B., Simon, M. N., and Wall, J. S. (1997) J. Mol. Biol., 272, 718–727.

    Article  Google Scholar 

  21. Tzfira, T., Rhee, Y., Chen, M. H., Kunik, T., and Citovsky, V. (2000) Annu. Rev. Microbiol., 54, 187–219.

    Article  PubMed  CAS  Google Scholar 

  22. Zupan, J. R., Citovsky, V., and Zambryski, P. (1996) Proc. Natl. Acad. Sci. USA, 93, 2392–2397.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. I. Chumakov.

Additional information

Original Russian Text © I. V. Volokhina, Yu. S. Gusev, S. I. Mazilov, M. I. Chumakov, 2011, published in Biokhimiya, 2011, Vol. 76, No. 11, pp. 1576–1582.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Volokhina, I.V., Gusev, Y.S., Mazilov, S.I. et al. Supramolecular complexes of the Agrobacterium tumefaciens virulence protein VirE2. Biochemistry Moscow 76, 1270–1275 (2011). https://doi.org/10.1134/S0006297911110095

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297911110095

Key words

Navigation