Skip to main content
Log in

NMDA receptors as a possible component of store-operated Ca2+ entry in human T-lymphocytes

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Elevation of intracellular Ca2+ in T-lymphocytes as a consequence of T cell antigen receptor activation triggers transcriptional programs resulting in effector cytokine secretion and immune response coordination. Increase of Ca2+ concentration in T-lymphocytes follows both the Ins(1,4,5)P3-dependent release from an intracellular store and subsequent influx from extracellular milieu. Flow cytometry and the fluorescent dye Fluo-4AM have been used to demonstrate that noncompetitive NMDA receptor antagonist (+)-MK801 inhibits Ca2+ influx in T cells induced by thapsigargin. Combination of thapsigargin and (+)-MK801 with following incubation does not affect Ca2+ mobilization from intracellular stores, while decreased Ca2+ entry was observed. Overall data indicate that the ion channel blocker (+)-MK801 is able to inhibit the Ca2+ influx and confirm our suggestion about involvement of NMDA receptor in the store-operated Ca2+ entry mechanisms in human T-lymphocytes. To identify the signal transduction pathways associated with NMDA receptors in mitogen-stimulated T-lymphocytes, the cells were incubated with (+)-MK801, then activity of key phosphorylated protein kinases of MAP-activated (pERK1/2, pSAPK/JNK, p-p38), Ca2+-dependent (pCaMKII), PI3/Akt-dependent (pGSK-3β), and PKC-activated (pPKCθ) pathways were detected. The data we obtained demonstrate that (+)-MK801 treatment leads to more prominent decrease in Ras-activated protein kinases pERK1/2 and Rac-activated proteins p-p38 and pSAPK/JNK, as compared to DAG-dependent pPKCθ and Ca2+-dependent pCaMKII. These results show that NMDA receptors are mainly involved in regulation of Ras/Rac-dependent signaling in T-lymphocytes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

APC/MHC:

antigen-presenting cell association with the main histocompatibility complex

BSS:

buffered saline solution

[Ca2+]i :

intracellular calcium concentration

DAG:

diacylglycerol

mAB:

monoclonal antibodies

MAP:

mitogen-activated protein kinase

NMDA:

N-methyl-D-aspartate

TCR:

T cell antigen receptor

References

  1. Hardingham, G. E. (2009) Biochem. Soc. Trans., 37, 1147–1160.

    Article  PubMed  CAS  Google Scholar 

  2. Nakanishi, S., Nakajima, Y., Masu, M., Ueda, Y., Nakahara, K., Watanabe, D., Yamaguchi, S., Kawabata, S., and Okada, M. (1998) Brain Res. Brain Res. Rev., 26, 230–235.

    Article  PubMed  Google Scholar 

  3. Mayer, M. L. (2005) Curr. Opin. Neurobiol., 15, 282–288.

    Article  PubMed  CAS  Google Scholar 

  4. Levite, M. (2008) Curr. Opin. Pharmacol., 8, 460–471.

    Article  PubMed  CAS  Google Scholar 

  5. Pacheco, R., Riquelme, E., and Kalergis, A. M. (2010) Cent. Nerv. Syst. Agents Med. Chem., 10, 65–83.

    PubMed  CAS  Google Scholar 

  6. Lombardi, G., Dianzani, C., Miglio, G., Canonico, P. L., and Fantozzi, R. (2001) Br. J. Pharmacol., 133, 936–944.

    Article  PubMed  CAS  Google Scholar 

  7. Tuneva, E. O., Bychkova, O. N., and Boldyrev, A. A. (2003) Byul. Eksp. Biol. Med., 136, 159–161.

    Article  CAS  Google Scholar 

  8. Ganor, Y., Besser, M., Ben-Zakay, N., Unger, T., and Levite, M. (2003) J. Immunol., 170, 4362–4372.

    PubMed  CAS  Google Scholar 

  9. Boldyrev, A. A., Kazey, V. I., Leinsoo, T. A., Mashkina, A. P., Tyulina, O. V., Johnson, P., Tuneva, J. O., Chittur, S., and Carpenter, D. O. (2004) Biochem. Biophys. Res. Commun., 5, 133–139.

    Article  Google Scholar 

  10. Lombardi, G., Miglio, G., Dianzani, C., Mesturini, R., Varsaldi, F., Chiocchetti, A., Dianzani, U., and Fantozzi, R. (2004) Biochem. Biophys. Res. Commun., 318, 496–502.

    Article  PubMed  CAS  Google Scholar 

  11. Pacheco, R., Ciruela, F., Casado, V., Mallol, J., Gallart, T., Lluis, C., and Franco, R. (2004) J. Biol. Chem., 279, 33352–33358.

    Article  PubMed  CAS  Google Scholar 

  12. Miglio, G., Varsaldi, F., and Lombardi, G. (2005) Biochem. Biophys. Res. Commun., 338, 1875–1883.

    Article  PubMed  CAS  Google Scholar 

  13. Mashkina, A. P., Tyulina, O. V., Solovyova, T. I., Kovalenko, E. I., Kanevski, L. M., Johnson, P., and Boldyrev, A. A. (2007) Neurochem. Int., 51, 356–360.

    Article  PubMed  CAS  Google Scholar 

  14. Miglio, G., Dianzani, C., Fallarini, S., Fantozzi, R., and Lombardi, G. (2007) Biochem. Biophys. Res. Commun., 361, 404–409.

    Article  PubMed  CAS  Google Scholar 

  15. Smith-Garvin, J. E., Koretzky, G. A., and Jordan, M. S. (2009) Annu. Rev. Immunol., 27, 591–619.

    Article  PubMed  CAS  Google Scholar 

  16. Hogan, P. G., Lewis, R. S., and Rao, A. (2010) Annu. Rev. Immunol., 28, 491–533.

    Article  PubMed  CAS  Google Scholar 

  17. Cahalan, M. D., and Chandy, K. G. (2009) Immunol. Rev., 231, 59–87.

    Article  PubMed  CAS  Google Scholar 

  18. Berridge, M. J., Bootman, M. D., and Lipp, P. (1998) Nature, 395, 645–648.

    Article  PubMed  CAS  Google Scholar 

  19. Lewis, R. S. (2001) Annu. Rev. Immunol., 19, 497–521.

    Article  PubMed  CAS  Google Scholar 

  20. Boyum, A. (1968) Scand. J. Lab. Clin. Invest., 21, 77–89.

    Article  CAS  Google Scholar 

  21. Emptage, N. J., Reid, C. A., and Fine, A. (2001) Neuron, 29, 197–208.

    Article  PubMed  CAS  Google Scholar 

  22. Baba, A., Yasui, T., Fujisawa, S., Yamada, R. X., Yamada, M. K., Nishiyama, N., Matsuki, N., and Ikegaya, Y. (2003) J. Neurosci., 23, 7737–7741.

    PubMed  CAS  Google Scholar 

  23. Pizzo, P., Burgo, A., Pozzan, T., and Fasolato, C. (2001) J. Neurochem., 79, 98–109.

    Article  PubMed  CAS  Google Scholar 

  24. Barr, V. A., Bernot, K. M., Shaffer, M. H., Burkhardt, J. K., and Samelson, L. E. (2009) Immunol. Rev., 231, 148–159.

    Article  PubMed  CAS  Google Scholar 

  25. Oh-hora, M., and Rao, A. (2008) Curr. Opin. Immunol., 20, 250–258.

    Article  PubMed  CAS  Google Scholar 

  26. Wang, Y. T., and Salter, M. W. (1994) Nature, 369, 233–235.

    Article  PubMed  CAS  Google Scholar 

  27. Tezuka, T., Umemori, H., Akiyama, T., Nakanishi, S., and Yamamoto, T. (1999) Proc. Natl. Acad. Sci. USA, 96, 435–440.

    Article  PubMed  CAS  Google Scholar 

  28. Quintana, A., Griesemer, D., Schwarz, E. C., and Hoth, M. (2005) Pflugers Arch., 450, 1–12.

    Article  PubMed  CAS  Google Scholar 

  29. Miglio, G., Varsaldi, F., Dianzani, C., Fantozzi, R., and Lombardi, G. (2005) Biochem. Pharmacol., 70, 189–199.

    Article  PubMed  CAS  Google Scholar 

  30. Hardingham, G. E., and Bading, H. (2010) Nat. Rev. Neurosci., 11, 682–696.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. V. Vakhitova.

Additional information

Original Russian Text © L. F. Zainullina, R. S. Yamidanov, V. A. Vakhitov, Yu. V. Vakhitova, 2011, published in Biokhimiya, 2011, Vol. 76, No. 11, pp. 1517–1524.

Originally published in Biochemistry (Moscow) On-Line Papers in Press, as Manuscript BM11-145, September 18, 2011.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zainullina, L.F., Yamidanov, R.S., Vakhitov, V.A. et al. NMDA receptors as a possible component of store-operated Ca2+ entry in human T-lymphocytes. Biochemistry Moscow 76, 1220–1226 (2011). https://doi.org/10.1134/S0006297911110034

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297911110034

Key words

Navigation