Skip to main content
Log in

Self-assembly of soluble unlinked and cross-linked fibrin oligomers

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Self-assembly of soluble unlinked and cross-linked fibrin oligomers formed from desA-fibrin monomer under the influence of factor XIIIa was studied in the presence of non-denaturing urea concentrations. By methods of elastic and dynamic light scattering combined with analytical ultracentrifugation, desA-fibrin oligomers formed in both the presence and absence of the factor XIIIa were shown to be ensembles consisting of soluble rod-like double-stranded protofibrils with diverse weight and size. Unlinked and cross-linked soluble double-stranded protofibrils can reach the length of 350–450 nm. The structure of soluble covalently-linked protofibrils is stabilized by isopeptide γ-dimers. Electrophoretic data indicate a complete absence of isopeptide bonds between α-chains of desA-fibrin molecules. The molecular mechanism of formation of soluble rod-like fibrin structures and specific features of its covalent stabilization under the influence of factor XIIIa are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mosesson, M. W. (2005) J. Thromb. Haemost., 3, 1894–1904.

    Article  PubMed  CAS  Google Scholar 

  2. Blomback, B. (1996) Thromb. Res., 83, 1–75.

    Article  PubMed  CAS  Google Scholar 

  3. Weisel, J. W. (2005) Adv. Protein. Chem., 70, 247–299.

    Article  PubMed  CAS  Google Scholar 

  4. Marguerie, G., and Stuhrmann, H. B. (1976) J. Mol. Biol., 102, 143–156.

    Article  PubMed  CAS  Google Scholar 

  5. Medved, L., and Weisel, W. (2009) J. Thromb. Haemost., 7, 355–359.

    Article  PubMed  CAS  Google Scholar 

  6. Spraggon, G., Everse, S. J., and Doolittle, R. F. (1997) Nature, 389, 455–462.

    Article  PubMed  CAS  Google Scholar 

  7. Madrazo, J., Brown, J. H., Livinovich, S., Dominguez, R., Yakovlev, S., Medved, L., and Cohen, C. (2001) Proc. Natl. Acad. Sci. USA, 98, 11967–11972.

    Article  PubMed  CAS  Google Scholar 

  8. Brown, J. H., Volkman, N., Jun, G., Henschen-Edman, A. H., and Cohen, C. (2001) Proc. Natl. Acad. Sci. USA, 97, 85–90.

    Article  Google Scholar 

  9. Yang, Z., Kollman, J. K., Pandi, L., and Doolittle, R. F. (2001) Biochemistry, 40, 12515–12523.

    Article  PubMed  CAS  Google Scholar 

  10. Budzynski, A. Z., Olexa, S. A., and Pandya, B. V. (1983) Ann. N. Y. Acad. Sci., 408, 301–314.

    Article  PubMed  CAS  Google Scholar 

  11. Yee, V. C., Pratt, K. P., Cote, H., Trong, I. L., Chung, D. W., Davie, E. W., Stencamp, R. E., and Teller, D. C. (1997) Structure, 5, 125–138.

    Article  PubMed  CAS  Google Scholar 

  12. Pratt, K. P., Cote, H., Chung, D. W., Stencamp, R. E., and Davie, E. W. (1997) Proc. Natl. Acad. Sci. USA, 94, 71–81.

    Article  Google Scholar 

  13. Doolittle, R. F. (1984) Annu. Rev. Biochem., 53, 195–229.

    Article  PubMed  CAS  Google Scholar 

  14. Blomback, B., Hessel, B., Hogg, D., and Therkildsen, L. (1978) Nature, 257, 501–505.

    Article  Google Scholar 

  15. Mihalyi, E. (1988) Biochemistry, 27, 967–976.

    Article  PubMed  CAS  Google Scholar 

  16. Rosenfeld, M. A., Gershkovich, K. B., Kuznetsov, D. V., Meshkov, B. B., and Gontar, I. D. (1986) Mol. Biol., 20, 1098–1110.

    CAS  Google Scholar 

  17. Rosenfeld, M. A., Gershkovich, K. B., and Kuznetsov, D. V. (1988) Mol. Biol., 22, 86–93.

    CAS  Google Scholar 

  18. Blomback, B., and Laurent, T. C. (1958) Ark. Kemi., 2, 137–146.

    Google Scholar 

  19. Lawrie, J. S., Ross, J., and Kemp, G. G. (1979) Biochem. Soc. Trans., 7, 693–694.

    PubMed  CAS  Google Scholar 

  20. Lorand, L., Gredo, R. B., and Janus, T. J. (1981) Methods Enzymol., 809, 333–341.

    Article  Google Scholar 

  21. Rosenfeld, M., and Vasileva, M. V. (1991) Biomed. Sci., 2, 155–161.

    Google Scholar 

  22. Svedsen, L., Blomback, B., Blomback, M., and Olsson, P. J. (1972) Tromb. Res., 3, 267–278.

    Article  Google Scholar 

  23. Rosenfeld, M. A., Leonova, V. B., Shchegolikhin, A. N., Razumovskii, S. D., Konstantinova, M. L., Bychkova, A. V., and Kovarskii, A. L. (2010) Biochemistry (Moscow), 75, 1285–1293.

    Article  CAS  Google Scholar 

  24. Shulman, S. (1953) J. Am. Chem. Soc., 75, 5846–5852.

    Article  CAS  Google Scholar 

  25. Casassa, E. F. (1955) J. Chem. Phys., 23, 596–597.

    Article  CAS  Google Scholar 

  26. Lugovskoi, E. V., Gritsenko, P. G., and Komissarenko, S. V. (2009) Bioorg. Khim., 35, 437–456.

    PubMed  CAS  Google Scholar 

  27. Hogg, D. H., and Blomback, B. (1978) Thromb. Res., 12, 953–964.

    Article  PubMed  CAS  Google Scholar 

  28. Yang, Z., Mochalkin, I., and Doolittle, R. F. (2000) Proc. Natl. Acad. Sci. USA, 97, 14156–14161.

    Article  PubMed  CAS  Google Scholar 

  29. Weisel, J. W., Veclich, Y., and Gorkun, O. (1993) J. Mol. Biol., 232, 285–297.

    Article  PubMed  CAS  Google Scholar 

  30. Tsvetkov, V. N., Eskin, V. E., and Frenkel, S. Ya. (1964) Structure of Macromolecules in Solutions [in Russian], Nauka, Moscow, pp. 93–480.

    Google Scholar 

  31. Weisel, J. W., Francis, C. W., Nagaswani, C., and Marder, V. J. (1993) J. Biol. Chem., 268, 26618–26624.

    PubMed  CAS  Google Scholar 

  32. Veklich, Y., Ang, E. K., Lorand, L., and Weisel, J. W. (1998) Proc. Natl. Acad. Sci. USA, 95, 1438–1442.

    Article  PubMed  CAS  Google Scholar 

  33. Doolittle, R. F. (2003) J. Thromb. Haemost., 1, 1559–1565.

    Article  PubMed  CAS  Google Scholar 

  34. Weisel, J. W. (2004) J. Thromb. Haemost., 2, 1467–1469.

    Article  PubMed  CAS  Google Scholar 

  35. Mosesson, M. W. (2004) J. Thromb. Haemost., 2, 388–393.

    Article  PubMed  CAS  Google Scholar 

  36. Krakow, Enders, G. F., Siegel, B. M., and Scheraga, H. A. (1972) J. Mol. Biol., 71, 95–103.

    Article  PubMed  CAS  Google Scholar 

  37. Williams, R. C. (1983) Ann. N. Y. Acad. Sci., 408, 180–193.

    Article  PubMed  CAS  Google Scholar 

  38. Gron, B., Filion-Myklebust, C., Bennick, A., Nieuwenhuizen, W., Matsueda, G. R., and Brosstad, F. (1992) Blood Coagul. Fibrinol., 3, 731–736.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Rosenfeld.

Additional information

Original Russian Text © M. A. Rosenfeld, V. B. Leonova, M. I. Biryukova, M. V. Vasileva, 2011, published in Biokhimiya, 2011, Vol. 76, No. 10, pp. 1416–1427.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rosenfeld, M.A., Leonova, V.B., Biryukova, M.I. et al. Self-assembly of soluble unlinked and cross-linked fibrin oligomers. Biochemistry Moscow 76, 1155–1163 (2011). https://doi.org/10.1134/S0006297911100099

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297911100099

Key words

Navigation