Skip to main content
Log in

Protective effect of L-arginine administration on proteins of unloaded m. soleus

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Cytoskeletal and contractile proteins degenerate during functional unloading of muscle. The ratio of myosin heavy chain (MHC) expression changes simultaneously. We have supposed that NO can be a signal molecule related to the regulation of protein metabolism upon muscle unloading. To test this hypothesis, Wistar rats underwent functional unloading for 14 days without and with peroral administration of L-arginine (500 mg/kg) as NO precursor. Significant decreases in m. soleus mass, NO, nNOS, dystrophin, Hsp90, p-S6K, and type I MHC mRNA contents were found in the group of animals with unloading without preparation compared to those in control and in the group with unloading and administration of L-arginine; at the same time, increased contents of atrogin-1/MAFbx and MuRF-1 (p < 0.05) were found. No difference in the IGF-1 mRNA content between all three groups was found. Atrophy was significantly less pronounced in the group with unloading and L-arginine administration compared to that without the amino acid, and no destruction of cytoskeletal proteins was observed. We conclude that administration of L-arginine upon functional unloading decreases the extent of m. soleus atrophy, prevents the decrease in it of type I MHC mRNA, and blocks destructive changes in some cytoskeletal proteins. Such effect can be due to the absence of increase in this group of the content of some ubiquitin ligases and decreased intensity of the p70S6 kinase synthesis marker.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

atrogin-1/MAFbx:

atrogin-1/Muscle Atrophy F-box

CSA:

cross sectional area

DETC:

diethyldithiocarbamate

GAPDH:

glyceraldehyde-3-phosphate dehydrogenase

Hsp90β:

90β heat shock proteins

IGF-1:

insulin-like growth factor 1

MF:

muscle fiber

MHC:

myosin heavy chain

mTOR:

mammalian target of rapamycin

MuRF-1:

muscle-specific RING finger protein 1

nNOS:

neuronal NO synthase

p70S6K:

p70S6 kinase

P-p70S6K:

phosphorylated form of p70S6 kinase

References

  1. Chopard, A., Francoise, P., and Marini, J.-F. (2001) Am. J. Physiol. Regul. Integr. Comp. Physiol., 280, 323–330.

    Google Scholar 

  2. Thomason, D. B., Biggs, R. B., and Booth, F. W. (1989) Am. J. Physiol. Regul. Integr. Comp. Physiol., 257, 300–305.

    Google Scholar 

  3. Thomason, D. B., and Booth, F. W. (1990) J. Appl. Physiol., 68, 1–12.

    Article  PubMed  CAS  Google Scholar 

  4. Shenkman, B. S., and Nemirovskaya, T. L. (2008) J. Muscle Res. Cell Motil., 29, 221–230.

    Article  PubMed  CAS  Google Scholar 

  5. Ingalls, C. P., Warren, G. L., and Armstrong, R. B. (1999) J. Appl. Physiol., 87, 386–390.

    PubMed  CAS  Google Scholar 

  6. Barton, E. R., Morris, L., Kawana, M., Bish, L. T., and Toursel, T. (2005) Muscle Nerve, 32, 751–760.

    Article  PubMed  CAS  Google Scholar 

  7. Vincent, V., Sebrie, C., Matecki, S., Yu, H., Gillet, B., Ramonatxo, M., Israel, M., and de la Porte, S. (2005) Neurobiol. Dis., 20, 123–130.

    Article  Google Scholar 

  8. Timothy, K. J., and Tidball, J. G. (2000) Am. J. Physiol. Cell Physiol., 279, 806–812.

    Google Scholar 

  9. Salanova, M., Schiffl, G., Puttmann, B., Schoser, B. G., and Blottner, D. (2008) J. Anat., 212, 306–318.

    Article  PubMed  CAS  Google Scholar 

  10. Tidball, J. G., Lavergne, E., Lau, K. S., Spencer, M. J., Stull, J. T., and Wehling, M. (1998) Am. J. Physiol. (Cell Physiol. 44), 275, 260–266.

    Google Scholar 

  11. Cohen, S., Brault, J. J., Gygi, S. P., Glass, D. J., Valenzuela, D. M., Gartner, C., Latres, E., and Goldberg, A. L. (2009) J. Cell Biol., 185, 1083–1095.

    Article  PubMed  CAS  Google Scholar 

  12. Morey-Holton, E. R., and Globus, R. K. (2002) J. Appl. Physiol., 92, 1367–1377.

    Article  PubMed  Google Scholar 

  13. Lomonosova, Yu. N., Zheleznyakova, A. V., Bugrova, A. E., Zhiryakova, A. V., Kalamkarov, G. R., and Nemirovskaya, T. L. (2009) Biofizika, 54, 515–521.

    PubMed  CAS  Google Scholar 

  14. Vanin, A. F., Huisman, A., and van Faassen, E. E. (2002) Meth. Enzymol., 359, 27–42.

    Article  PubMed  CAS  Google Scholar 

  15. Obolenskaya, M. Yu., Vanin, A. F., Mordvintcev, P. I., Molsch, A., and Decker, K. (1994) Biochem. Biophys. Res. Commun., 202, 571–576.

    Article  PubMed  CAS  Google Scholar 

  16. Soti, C., Nagy, E., Giricz, Z., Vigh, L., Csermely, P., and Ferdinandy, P. (2005) British J. Pharmacol., 146, 769–780.

    Article  CAS  Google Scholar 

  17. Balon, T. W., and Nadler, J. L. (1994) J. Appl. Physiol., 77, 2519–2521.

    PubMed  CAS  Google Scholar 

  18. Pye, D., Palomero, J., Kabayo, T., and Jackson, M. J. (2007) J. Physiol., 15, 309–318.

    Article  Google Scholar 

  19. Brennan, M. H., Mitchell, B. M., Sood, S. G., Webb, R. C., and Venema, R. C. (2008) Eur. J. Appl. Physiol., 104, 795–802.

    Google Scholar 

  20. Sakurai, T., Fujita, Y., Ohto, E., Oguro, A., and Atomi, Y. (2005) FASEB J., 19, 1199–1201.

    PubMed  CAS  Google Scholar 

  21. Ishihara, A., Fujino, H., Nagatomo, F., Takeda, I., and Ohira, Y. (2008) J. Physiol. Sci., 58, 413–417.

    Article  PubMed  CAS  Google Scholar 

  22. Averna, M., Stifanese, R., de Tullio, R., Salamino, F., Pontremoli, S., and Melloni, E. (2008) FEBS J., 275, 2501–2511.

    Article  PubMed  CAS  Google Scholar 

  23. Song, Y., Zweier, J. L., and Xia, Y. (2001) Biochem. J., 355, 357–360.

    Article  PubMed  CAS  Google Scholar 

  24. Song, Y., Zweier, J. L., and Xia, Y. (2001) Am. J. Physiol. Cell Physiol., 281, 1819–1824.

    Google Scholar 

  25. Vermaelen, M., Sirvent, P., Raynaud, F., Astier, C., Mercier, J., Lacampagne, A., and Cazorla, O. (2007) Am. J. Physiol. Cell Physiol., 292, 1723–1731.

    Article  Google Scholar 

  26. Koh, T. J., and Tidball, J. G. (2000) Am. J. Physiol. Cell Physiol., 279, 806–812.

    Google Scholar 

  27. Chockalingam, P. S., Cholera, R., Oak, S. A., Zheng, Y., Jarrett, H. W., and Thomason, D. B. (2002) Am. J. Physiol. Cell Physiol., 283, 500–511.

    Google Scholar 

  28. Dapp, C., Schmutz, S., Hoppeler, H., and Fluck, M. (2004) Physiol. Genom., 20, 97–107.

    Article  Google Scholar 

  29. Enns, D. L., Raastad, T., Ugelstad, I., and Belcastro, A. N. (2007) Eur. J. Appl. Physiol., 100, 445–455.

    Article  PubMed  CAS  Google Scholar 

  30. Giger, J. M., Bodell, P. W., Zeng, M., Baldwin, K. M., and Haddad, F. (2009) J. Appl. Physiol., 107, 1204–1212.

    Article  PubMed  CAS  Google Scholar 

  31. Wagatsuma, A., Fujimoto, K., and Yamada, S. (2002) Scand. J. Med. Sci. Sports, 12, 26–30.

    Article  PubMed  CAS  Google Scholar 

  32. Chopard, A., Arrighi, N., Carnino, A., and Marini, J. F. (2005) FASEB J., 19, 1722–1724.

    PubMed  CAS  Google Scholar 

  33. Jackman, R. W., and Kandarian, S. C. (2004) Am. J. Physiol. Cell Physiol., 287, 834–843.

    Article  Google Scholar 

  34. Dupont-Versteegden, E. E., Fluckey, J. D., Knox, M., Gaddy, D., and Peterson, C. A. (2006) J. Appl. Physiol., 101, 202–212.

    Article  PubMed  CAS  Google Scholar 

  35. Reid, M. B. (2005) Am. J. Physiol. Regul. Integr. Comp. Physiol., 288, 1423–1431.

    Article  Google Scholar 

  36. Pratt, W. B., Morishima, Y., and Osawa, Y. (2008) J. Biol. Chem., 283, 22885–22889.

    Article  PubMed  CAS  Google Scholar 

  37. Bodine, S. C., Stitt, T. N., Gonzalez, M., Kline, W. O., Stover, G. L., Bauerlein, R., Zlotchenko, E., Scrimgeour, A., Lawrence, J. C., Glass, D. J., and Yancopoulos, G. D. (2001) Nat. Cell Biol., 3, 1014–1029.

    Article  PubMed  CAS  Google Scholar 

  38. Gwag, T., Lee, K., Ju, H., Shin, H., and Lee, J. W. (2009) Cell Physiol. Biochem., 24, 537–546.

    Article  PubMed  CAS  Google Scholar 

  39. Song, Y. H., Godard, M., Li, Y., Richmond, S. R., Rosenthal, N., and Delafontaine, P. (2005) J. Invest. Med., 53, 135–142.

    Article  CAS  Google Scholar 

  40. Awedea, B., Thissenb, J.-P., Gaillya, P., and Lebacq, J. (1999) FEBS Lett., 461, 263–267.

    Article  Google Scholar 

  41. Lori, S. W., Smith, J. D., and Criswell, D. S. (2002) J. Appl. Physiol., 92, 2005–2011.

    Google Scholar 

  42. Drenning, J. A., Lira, V. A., Simmons, C. G., Soltow, Q. A., Sellman, J. E., and Criswell, D. S. (2008) Am. J. Physiol. Cell Physiol., 294, 1088–1095.

    Article  Google Scholar 

  43. Chin, E. R. (2005) J. Appl. Physiol., 99, 414–423.

    Article  PubMed  CAS  Google Scholar 

  44. Peng, H.-M., Morishima, Y., Clapp, K. M., Lau, M., Pratt, W. B., and Osawa, Y. (2009) Biochemistry, 48, 8483–8490.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. L. Nemirovskaya.

Additional information

Original Russian Text © Yu. N. Lomonosova, G. R. Kalamkarov, A. E. Bugrova, T. F. Shevchenko, N. L. Kartashkina, E. A. Lysenko, V. I. Shvets, T. L. Nemirovskaya, 2011, published in Biokhimiya, 2011, Vol. 76, No. 5, pp. 701–712.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lomonosova, Y.N., Kalamkarov, G.R., Bugrova, A.E. et al. Protective effect of L-arginine administration on proteins of unloaded m. soleus . Biochemistry Moscow 76, 571–580 (2011). https://doi.org/10.1134/S0006297911050075

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297911050075

Key words

Navigation