Biochemistry (Moscow)

, 76:517 | Cite as

Biological chemistry as a foundation of DNA genealogy: The emergence of “molecular history”

  • A. A. Klyosov


This paper presents the basis of DNA genealogy, a new field of science, which is currently emerging as an unusual blend of biochemistry, history, linguistics, and chemical kinetics. The methodology of the new approach is comprised of chemical (biological) kinetics applied to a pattern of mutations in non-recombinant fragments of DNA (Y chromosome and mtDNA, the latter not being considered in this overview). The goal of the analysis is to translate DNA mutation patterns into time spans to the most recent common ancestors of a given population or tribe and to the dating of ancient migration routes. To illustrate this approach, time spans to the common ancestors are calculated for ethnic Russians, that is Eastern Slavs (R1a1 tribe), Western Slavs (I1 and I2 tribes), and Northern (or Uralic) Slavs (N1c tribe), which were found to live around 4600 years before present (R1a1), 3650 ybp (I1), 3000 and 10,500 ybp (I2, two principal DNA lineages), and 3525 ybp (N1c) (confidence intervals are given in the main text). The data were compared with the respective dates for the nearest common ancestor of the R1a1 “Indo-European” population in India, who lived 4050 years before present, whose descendants represent the majority of the upper castes in India today (up to 72%). Furthermore, it was found that the haplotypes of ethnic Russians of the R1a1 haplogroup (up to 62% of the population in the Russian Federation) and those of the R1a1 Indians (more than 100 million today) are practically identical to each other, up to 67-marker haplotypes. This essentially solves a 200-year-old mystery of who were the Aryans who arrived in India around 3500 years before the present. Haplotypes and time spans to the ancient common ancestors were also compared for the ethnic Russians of haplogroups I1 and I2, on one hand, and the respective I1 and I2 populations in Eastern and Western Europe and Scandinavia, on the other. It is suggested that the approach described in this overview lays the foundation for “molecular history”, in which the principal tool is high-technology analysis of DNA molecules of both our contemporaries and excavated ancient DNA samples, along with their biological kinetics.

Key words

DNA DNA genealogy haplogroups haplotypes mutations Y chromosome 


  1. 1.
    Klyosov, A. A. (2009) J. Genet. Geneal., 5, 186–216.Google Scholar
  2. 2.
    Klyosov, A. A. (2009) Hum. Genet., 126, 719–724.PubMedCrossRefGoogle Scholar
  3. 3.
    Roewer, L., Willuweit, S., Kruger, C., Nagy, M., Rychkov, S., Morozowa, I., Naumova, O., Schneider, Y., Zhukova, O., Stoneking, M., and Nasidze, I. (2008) Int. Legal Med., 122, 219–223.CrossRefGoogle Scholar
  4. 4.
    Klyosov, A. A. (2009) Proc. Russian Acad. DNA Geneal., 2, 232–251.Google Scholar
  5. 5.
    Klyosov, A. A. (2008) Proc. Russian Acad. DNA Geneal., 1, 400–477.Google Scholar
  6. 6.
    Klyosov, A. A. (2008) Proc. Russian Acad. DNA Geneal., 1, 947–957.Google Scholar
  7. 7.
    Klyosov, A. A. (2009) J. Genet. Geneal., 5, 217–256.Google Scholar
  8. 8.
    Klyosov, A. A. (2009) Proc. Russian Acad. DNA Geneal., 2, 1217–1229.Google Scholar
  9. 9.
    Klyosov, A. A. (2010) Proc. Russian Acad. DNA Geneal., 3, 249–299.Google Scholar
  10. 10.
    Sharma, S., Rai, E., Sharma, P., Jena, M., Singh, S., Darvishi, K., Bhat, A. K., Bhanwer, A. J. S., Tiwari, P. K., and Bamezai, R. N. K. (2009) J. Hum. Genet., 54, 47–55.PubMedCrossRefGoogle Scholar
  11. 11.
    Klyosov, A. A. (2009) Proc. Russian Acad. DNA Geneal., 2, 801–815.Google Scholar
  12. 12.
    Klyosov, A. A. (2009) Proc. Russian Acad. DNA Geneal., 2, 370–389.Google Scholar
  13. 13.
    Klyosov, A. A. (2008) Proc. Russian Acad. DNA Geneal., 1, 252–348.Google Scholar
  14. 14.
    Klyosov, A. A. (2008) Proc. Russian Acad. DNA Geneal., 1, 812–835.Google Scholar
  15. 15.
    Adamov, D. S., and Klyosov, A. A. (2009) Proc. Russian Acad. DNA Geneal., 2, 422–442.Google Scholar
  16. 16.
    Klyosov, A. A. (2010) Proc. Russian Acad. DNA Geneal., 3, 96–158.Google Scholar
  17. 17.
    Klyosov, A. A., Witczak, Z. J., and Platt, D. (2006) Carbohydrate Drug Design, Cambridge University Press, Cambridge.CrossRefGoogle Scholar
  18. 18.
    Klyosov, A. A., Witczak, Z. J., and Platt, D. (2008) Galectins, John Wiley and Sons.Google Scholar
  19. 19.
    Sun, J. X., Millikin, J. C., Patterson, N., and Reich, D. E. (2009) Mol. Biol. Evol., 26, 1017–1027.PubMedCrossRefGoogle Scholar
  20. 20.
    Klyosov, A. A. (2010) Proc. Russian Acad. DNA Geneal., 3, 1853–1860.Google Scholar
  21. 21.
    Cordaux, R., Bentley, G., Aunger, R., Sirajuddin, S. M., and Stoneking, M. J. (2004) Forensic Sci., 49, 1–2.Google Scholar
  22. 22.
    Goldstein, D. B., Linares, A. R., Cavalli-Sforza, L. L., and Feldman, M. W. (1995) Proc. Natl. Acad. Sci. USA, 92, 6723–6727.PubMedCrossRefGoogle Scholar
  23. 23.
    Hammer, M. F., Redd, A. J., Wood, E. T., Bonner, M. R., Jarjanazi, H., Karafet, T., Santachiara-Benerecetti, S., Oppenheim, A., Jobling, M. A., Jenkins, T., Ostrer, H., and Bonne-Tamir, B. (2000) Proc. Natl. Acad. Sci. USA, 97, 6769–6774.PubMedCrossRefGoogle Scholar
  24. 24.
    Heyer, E., Puymirat, J., Dieltjes, P., Bakker, E., and de Knijff, P. (1997) Hum. Mol. Genet., 6, 799–803.PubMedCrossRefGoogle Scholar
  25. 25.
    Jobling, M. A., and Tyler-Smith, C. (1995) Trends Genet., 11, 449–456.PubMedCrossRefGoogle Scholar
  26. 26.
    Karafet, T. M., Zegura, S. L., Posukh, O., Osipova, L., Bergen, A., Long, J., Goldman, D., Klitz, W., Harihara, S., de Knijff, P., Wiebe, V., Griffiths, R. C., Templeton, A. R., and Hammer, M. F. (1999) Am. J. Hum. Genet., 64, 817–831.PubMedCrossRefGoogle Scholar
  27. 27.
    Kayser, M., Roewer, L., Hedman, M., Henke, L., Hemke, J., Brauer, S., Kruger, C., Krawczak, M., Nagy, M., Dobosz, T., Szibor, R., de Knijff, P., Stoneking, M., and Sajantila, A. (2000) Am. J. Hum. Genet., 66, 1580–1588.PubMedCrossRefGoogle Scholar
  28. 28.
    Nebel, A., Filon, D., Weiss, D. A., Weale, M., Faerman, M., Oppenheim, A., and Thomas, M. (2000) Hum. Genet., 107, 630–641.PubMedCrossRefGoogle Scholar
  29. 29.
    Nebel, A., Filon, D., Brinkmann, B., Majumder, P. P., Faerman, M., and Oppenheim, A. (2001) Am. J. Hum. Genet., 69, 1095–1112.PubMedCrossRefGoogle Scholar
  30. 30.
    Nei, M. (1995) Proc. Natl. Acad. Sci. USA, 92, 6720–6722.PubMedCrossRefGoogle Scholar
  31. 31.
    Semino, O., Passarino, G., Oefner, P. J., Lin, A. A., Arbuzova, S., Beckman, L. E., de Benedictis, G., Francalacci, P., Kouvatsi, A., Limborska, S., Marcikiae, M., Mika, A., Mika, B., Primorac, D., Santachiara-Benerecetti, A. S., Cavalli-Sforza, L. L., and Underhill, P. A. (2000) Science, 290, 1155–1159.PubMedCrossRefGoogle Scholar
  32. 32.
    Takezaki, N., and Nei, M. (1996) Genetics, 144, 389–399.PubMedGoogle Scholar
  33. 33.
    Underhill, P. A., Shen, P., Lin, A. A., Jin, L., Passarino, G., Yang, W. H., Kauffman, E., Bonne-Tamir, B., Bertranpetit, J., Francalacci, P., Ibrahim, M., Jenkins, T., Kidd, J. R., Mehdi, S. Q., Seielstad, M. T., Wells, R. S., Piazza, A., Davis, R. W., Feldman, M. W., Cavalli-Sforza, L. L., and Oefner, P. J. (2000) Nature Genet., 26, 358–361.PubMedCrossRefGoogle Scholar
  34. 34.
    Walsh, B. (2001) Genetics, 158, 897–912.PubMedGoogle Scholar
  35. 35.
    Wells, R. S., Yuldasheva, N., Ruzibakiev, R., Underhill, P. A., Evseeva, I., Blue-Smith, L., Jin, L., Su, B., Pitchappan, R., Shanmugalaksmi, S., Balakrishnan, K., Read, M., Pearson, N. M., Zerjal, T., Webster, M. T., Zholoshvili, I., Jamarjashvili, E., Gambarov, S., Nikbin, B., Dostiev, A., Aknazarov, O., Zallous, P., Tsoy, I., Kitaev, M., Mirrakhimov, M., Chariev, A., and Bodmer, W. F. (2001) Proc. Natl. Acad. Sci. USA, 98, 10244–10249.PubMedCrossRefGoogle Scholar
  36. 36.
    Zhivotovsky, L. A., and Feldman, M. W. (1995) Proc. Natl. Acad. Sci. USA, 92, 11549–11552.PubMedCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  1. 1.MIR International, Inc.NewtonUSA

Personalised recommendations