Skip to main content

Participation of translesion synthesis DNA polymerases in the maintenance of chromosome integrity in yeast Saccharomyces cerevisiae

Abstract

We employed a genetic assay based on illegitimate hybridization of heterothallic Saccharomyces cerevisiae strains (the α-test) to analyze the consequences for genome stability of inactivating translesion synthesis (TLS) DNA polymerases. The α-test is the only assay that measures the frequency of different types of mutational changes (point mutations, recombination, chromosome or chromosome arm loss) and temporary changes in genetic material simultaneously. All these events are manifested as illegitimate hybridization and can be distinguished by genetic analysis of the hybrids and cytoductants. We studied the effect of Polζ, Polη, and Rev1 deficiency on the genome stability in the absence of genotoxic treatment and in UV-irradiated cells. We show that, in spite of the increased percent of accurately repaired primary lesions, chromosome fragility, rearrangements, and loss occur in the absence of Polζ and Polη Our findings contribute to further refinement of the current models of translesion synthesis and the organization of eukaryotic replication fork.

This is a preview of subscription content, access via your institution.

Abbreviations

MD:

minimal dextrose

TLS:

translesion synthesis

YPD:

yeast extract

peptone:

dextrose

References

  1. 1.

    Nelson, J. R., Lawrence, C. W., and Hinkle, D. C. (1996) Science, 272, 1646–1649.

    CAS  Article  PubMed  Google Scholar 

  2. 2.

    McDonald, J. P., Levine, A. S., and Woodgate, R. (1997) Genetics, 147, 1557–1568.

    CAS  PubMed  Google Scholar 

  3. 3.

    Johnson, R. E., Prakash, S., and Prakash, L. (1999) Science, 283, 1001–1004.

    CAS  Article  PubMed  Google Scholar 

  4. 4.

    Acharya, N., Johnson, R. E., Prakash, S., and Prakash, L. (2006) Mol. Cell. Biol., 26, 9555–9563.

    CAS  Article  PubMed  Google Scholar 

  5. 5.

    Acharya, N., Haraska, L., Prakash, S., and Prakash, L. (2007) Mol. Cell. Biol., 27, 8401–8408.

    CAS  Article  PubMed  Google Scholar 

  6. 6.

    Johnson, R. E., Yu, S. L., Prakash, S., and Prakash, L. (2003) Genes Dev., 17, 77–87.

    CAS  Article  PubMed  Google Scholar 

  7. 7.

    Gibbs, P. E., McDonald, J., Woodgate, R., and Lawrence, C. W. (2005) Genetics, 169, 575–582.

    CAS  Article  PubMed  Google Scholar 

  8. 8.

    Haracska, L., Unk, I., Johnson, R. E., Johansson, E., Burgers, P. M., Prakash, S., and Prakash, L. (2001) Genes Dev., 15, 945–954.

    CAS  Article  PubMed  Google Scholar 

  9. 9.

    Lawrence, C. W., and Maher, V. M. (2001) Phil. Trans. Roy. Soc. Lond. B, 356, 41–46.

    CAS  Article  Google Scholar 

  10. 10.

    Bresson, A., and Fuchs, R. P. (2002) EMBO J., 21, 3881–3887.

    CAS  Article  PubMed  Google Scholar 

  11. 11.

    Prakash, S., and Prakash, L. (2002) Genes Dev., 16, 1872–1883.

    CAS  Article  PubMed  Google Scholar 

  12. 12.

    Haracska, L., Yu, S. L., Johnson, R. E., Prakash, L., and Prakash, S. (2000) Nat. Genet., 25, 458–461.

    CAS  Article  PubMed  Google Scholar 

  13. 13.

    Washington, M. T., Johnson, R. E., Prakash, S., and Prakash, L. (1999) J. Biol. Chem., 274, 36835–36838.

    CAS  Article  PubMed  Google Scholar 

  14. 14.

    Washington, M. T., Johnson, R. E., Prakash, L., and Prakash, S. (2001) Proc. Natl. Acad. Sci. USA, 98, 8355–8360.

    CAS  Article  PubMed  Google Scholar 

  15. 15.

    Matsuda, T., Bebenek, K., Masutani, C., Hanaoka, F., and Kunkel, T. A. (2000) Nature, 404, 1011–1013.

    CAS  Article  PubMed  Google Scholar 

  16. 16.

    McCulloch, S. D., Kokoska, R. J., Masutani, C., Iwai, S., Hanaoka, F., and Kunkel, T. A. (2004) Nature, 428, 97–100.

    CAS  Article  PubMed  Google Scholar 

  17. 17.

    Johnson, R. E., Kondratick, C. M., Prakash, S., and Prakash, L. (1999) Science, 285, 263–265.

    CAS  Article  PubMed  Google Scholar 

  18. 18.

    Masutani, C., Kusumoto, R., Yamada, A., Dohmae, N., Yokoi, M., Yuasa, M., Araki, M., Iwai, S., Takio, K., and Hanaoka, F. (1999) Nature, 399, 700–704.

    CAS  Article  PubMed  Google Scholar 

  19. 19.

    Nelson, J. R., Gibbs, P. E., Nowicka, A. M., Hinkle, D. C., and Lawrence, C. W. (2000) Mol. Microbiol., 37, 549–554.

    CAS  Article  PubMed  Google Scholar 

  20. 20.

    Zhao, B., Xie, Z., Shen, H., and Wang, Z. (2004) Nucleic Acids Res., 32, 3984–3994.

    CAS  Article  PubMed  Google Scholar 

  21. 21.

    Otsuka, C., Kunitomi, N., Iwai, S., Loakes, D., and Negishi, K. (2005) Mutat. Res., 578, 79–87.

    CAS  PubMed  Google Scholar 

  22. 22.

    Pages, V., Johnson, R. E., Prakash, L., and Prakash, S. (2008) Proc. Natl. Acad. Sci. USA, 105, 1170–1175.

    CAS  Article  PubMed  Google Scholar 

  23. 23.

    Lawrence, C. W. (2002) DNA Repair, 1, 425–435.

    CAS  Article  PubMed  Google Scholar 

  24. 24.

    Okada, T., Sonoda, E., Yoshimura, M., Kawano, Y., Saya, H., Kohzaki, M., and Takeda, S. (2005) Mol. Cell. Biol., 25, 6103–6111.

    CAS  Article  PubMed  Google Scholar 

  25. 25.

    Chen, J., and Fang, G. (2001) Genes Dev., 15, 1765–1770.

    CAS  Article  PubMed  Google Scholar 

  26. 26.

    Murakumo, Y., Roth, T., Ishii, H., Rasio, D., Numata, S., Croce, C. M., and Fishel, R. (2000) J. Biol. Chem., 275, 4391–4397.

    CAS  Article  PubMed  Google Scholar 

  27. 27.

    Gan, G. N., Wittschieben, J. P., Wittschieben, B. O., and Wood, R. D. (2008) Cell Res., 18, 174–183.

    CAS  Article  PubMed  Google Scholar 

  28. 28.

    Sonoda, E., Takata, M., Yamashita, Y. M., Morrison, C., and Takeda, S. (2001) Proc. Natl. Acad. Sci. USA, 98, 8388–8394.

    CAS  Article  PubMed  Google Scholar 

  29. 29.

    Van Sloun, P. P., Varlet, I., Sonneveld, E., Boei, J. J., Romeijn, R. J., Eeken, J. C., and de Wind, N. (2002) Mol. Cell. Biol., 22, 2159–2169.

    Article  PubMed  Google Scholar 

  30. 30.

    Holbeck, S. L., and Strathern, J. N. (1997) Genetics, 147, 1017–1024.

    CAS  PubMed  Google Scholar 

  31. 31.

    Rattray, A. J., Shafer, B. K., McGill, C. B., and Strathern, J. N. (2002) Genetics, 162, 1063–1077.

    CAS  PubMed  Google Scholar 

  32. 32.

    Repnevskaya, M. V., Kashkin, P. K., and Inge-Vechtomov, S. G. (1989) Russ. J. Genet., 25, 425–436.

    Google Scholar 

  33. 33.

    Inge-Vechtomov, S. G., Repnevskaya, M. V., and Karpova, T. S. (1986) Russ. J. Genet., 22, 2625–2636.

    CAS  Google Scholar 

  34. 34.

    Kochenova, O. V., Borhsenius, A. S., Stepchenkova, E. I., and Inge-Vechtomov, S. G. (2008) The Digest of Biological Institute’s Works, 54, 89–100.

    Google Scholar 

  35. 35.

    Rose, M. D., Winston, F., and Hieter, P. (1990) Methods in Yeast Genetics, CSHL Press.

  36. 36.

    Shcherbakova, P. V., Noskov, V. N., Pshenichnov, M. R., and Pavlov, Y. I. (1996) Mutat. Res., 369, 33–44.

    CAS  Article  PubMed  Google Scholar 

  37. 37.

    Wach, A., Brachat, A., Pohlmann, R., and Philippsen, P. (1994) Yeast, 10, 1793–1808.

    CAS  Article  PubMed  Google Scholar 

  38. 38.

    Lawrence, C. W., and Christensen, R. (1976) Genetics, 82, 207–232.

    CAS  PubMed  Google Scholar 

  39. 39.

    Roush, A. A., Suarez, M., Friedberg, E. C., Radman, M., and Siede, W. (1998) Mol. Gen. Genet., 257, 686–692.

    CAS  Article  PubMed  Google Scholar 

  40. 40.

    Mann, H. B., and Whitney, D. R. (1947) Ann. Math. Statist., 18, 50–60.

    Article  Google Scholar 

  41. 41.

    Mackay, V., and Manney, T. R. (1974) Genetics, 76, 255–271.

    CAS  PubMed  Google Scholar 

  42. 42.

    Mackay, V., and Manney, T. R. (1974) Genetics, 76, 273–288.

    CAS  PubMed  Google Scholar 

  43. 43.

    Strathern, J., Hicks, J., and Herskowitz, I. (1981) J. Mol. Biol., 147, 357–372.

    CAS  Article  PubMed  Google Scholar 

  44. 44.

    Astell, C. R., Ahlstrom-Jonasson, L., Smith, M., Tatchell, K., Nasmyth, K. A., and Hall, B. D. (1981) Cell, 27, 15–23.

    CAS  Article  PubMed  Google Scholar 

  45. 45.

    Inge-Vechtomov, S. G., and Repnevskaya, M. V. (1989) Genome, 31, 497–502.

    CAS  PubMed  Google Scholar 

  46. 46.

    Hicks, J. B., and Herskowitz, I. (1977) Genetics, 83, 245–258.

    Google Scholar 

  47. 47.

    Strathern, J. N., Newlon, C. S., Herskovitz, I., and Hicks, J. B. (1979) Cell, 18, 309–319.

    CAS  Article  PubMed  Google Scholar 

  48. 48.

    Inge-Vechtomov, S. G., and Karpova, T. S. (1984) Russ. J. Genet., 20, 398–407.

    CAS  Google Scholar 

  49. 49.

    Ravanat, J. L., Douki, T., and Cadet, J. (2001) J. Photochem. Photobiol. B., 63, 88–102.

    CAS  Article  PubMed  Google Scholar 

  50. 50.

    Mcllwraith, M. J., Vaisman, A., Liu, Y., Fanning, E., Woodgate, R., and West, S. C. (2005) Mol. Cell, 20, 783–792.

    Article  PubMed  Google Scholar 

  51. 51.

    Aguilera, A. (2002) EMBO J., 21, 195–201.

    CAS  Article  PubMed  Google Scholar 

  52. 52.

    Saxowsky, T. T., and Doetsch, P. W. (2006) Chem. Rev., 106, 474–488.

    CAS  Article  PubMed  Google Scholar 

  53. 53.

    Friedberg, E. C. (2005) Nat. Rev. Mol. Cell Biol., 6, 943–953.

    CAS  Article  PubMed  Google Scholar 

  54. 54.

    Waters, L. S., Minesinger, B. K., Wiltrout, M. E., D’souza, S., Woodruff, R. V., and Walker, G. C. (2009) Microbiol. Mol. Biol. Rev., 73, 134–154.

    CAS  Article  PubMed  Google Scholar 

  55. 55.

    Lindahl, T., and Nyberg, B. (1972) Biochemistry, 11, 3610–3618.

    CAS  Article  PubMed  Google Scholar 

  56. 56.

    Lindahl, T., and Nyberg, B. (1974) Biochemistry, 13, 3405–3410.

    CAS  Article  PubMed  Google Scholar 

  57. 57.

    Roche, H., Gietz, R. D., and Kunz, B. A. (1994) Genetics, 137, 637–646.

    CAS  PubMed  Google Scholar 

  58. 58.

    Roche, H., Gietz, R. D., and Kunz, B. A. (1995) Genetics, 140, 443–456.

    CAS  PubMed  Google Scholar 

  59. 59.

    Broomfield, S., Chow, B. L., and Xiao, W. (1998) Proc. Natl. Acad. Sci. USA, 95, 5678–5683.

    CAS  Article  PubMed  Google Scholar 

  60. 60.

    Glassner, B. J., Rasmussen, L. J., Najarian, M. T., Posnick, L. M., and Samson, L. D. (1998) Proc. Natl. Acad. Sci. USA, 95, 9997–10002.

    CAS  Article  PubMed  Google Scholar 

  61. 61.

    Xiao, W., Chow, B. L., Hanna, M., and Doetsch, P. W. (2001) Mutat. Res., 487, 137–147.

    CAS  PubMed  Google Scholar 

  62. 62.

    Harfe, B. D., and Jinks-Robertson, S. (2000) Mol. Cell, 6, 1491–1499.

    CAS  Article  PubMed  Google Scholar 

  63. 63.

    Xiao, W., Chow, B. L., Fontanie, T., Ma, L., Bacchetti, S., Hryciw, T., and Broomfield, S. (1999) Mutat. Res., 435, 1–11.

    CAS  PubMed  Google Scholar 

  64. 64.

    Auerbach, P., Bennett, R. A., Bailey, E. A., Krokan, H. E., and Demple, B. (2005) Proc. Natl. Acad. Sci. USA, 102, 17711–17716.

    CAS  Article  PubMed  Google Scholar 

  65. 65.

    Northam, M. R., Garg, P., Baitin, D. M., Burgers, P. M., and Shcherbakova, P. V. (2006) EMBO J., 25, 4316–4325.

    CAS  Article  PubMed  Google Scholar 

  66. 66.

    Northam, M. R., Robinson, H. A., Kochenova, O. V., and Shcherbakova, P. V. (2010) Genetics, 184, 27–42.

    CAS  Article  PubMed  Google Scholar 

  67. 67.

    Agarwal, S., Tafel, A. A., and Kanaar, R. (2006) DNA Repair, 5, 1075–1081.

    CAS  Article  PubMed  Google Scholar 

  68. 68.

    Waters, L. S., and Walker, G. C. (2006) Proc. Natl. Acad. Sci. USA, 103, 8971–8976.

    CAS  Article  PubMed  Google Scholar 

  69. 69.

    Jansen, J. G., Tsaalbi-Shtylik, A., Langerak, P., Calleja, F., Meijers, C. M., Jacobs, H., and de Wind, N. (2005) Nucleic Acids Res., 33, 356–365.

    CAS  Article  PubMed  Google Scholar 

  70. 70.

    Berdis, A. J. (2008) Biochemistry, 47, 8253–8260.

    CAS  Article  PubMed  Google Scholar 

  71. 71.

    Dumstorf, C. A., Mukhopadhyay, S., Krishnan, E., Haribabu, B., and McGregor, W. G. (2009) Mol. Cancer Res., 7, 247–254.

    CAS  Article  PubMed  Google Scholar 

  72. 72.

    Zhu, F., Jin, C. X., Song, T., Yang, J., Guo, L., and Yu, Y. N. (2003) World J. Gastroenterol., 9, 888–893.

    CAS  PubMed  Google Scholar 

  73. 73.

    Wittschieben, J. P., Reshmi, S. C., Gollin, S. M., and Wood, R. D. (2006) Cancer Res., 66, 134–142.

    CAS  Article  PubMed  Google Scholar 

  74. 74.

    Wittschieben, J. P., Patil, V., Glushets, V., Robinson, L. J., Kusewitt, D. F., and Wood, R. D. (2010) Cancer Res., 70, 2770–2778.

    CAS  Article  PubMed  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to P. V. Shcherbakova.

Additional information

Published in Russian in Biokhimiya, 2011, Vol. 76, No. 1, pp. 62–75.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kochenova, O.V., Soshkina, J.V., Stepchenkova, E.I. et al. Participation of translesion synthesis DNA polymerases in the maintenance of chromosome integrity in yeast Saccharomyces cerevisiae . Biochemistry Moscow 76, 49–60 (2011). https://doi.org/10.1134/S000629791101007X

Download citation

Key words

  • Saccharomyces cerevisiae
  • translesion synthesis
  • recombination
  • chromosome stability