Dietary supplementation of old rats with hydrogenated peanut oil restores activities of mitochondrial respiratory complexes in skeletal muscles

Abstract

The effect of dietary supplementation of old rats (26–33 months) with hydrogenated peanut oil on the activity of mitochondrial enzymes in skeletal muscles has been studied. The activities of NADH-coenzyme Q1 oxidoreductase, cytochrome c oxidase, and citrate synthase were determined spectrophotometrically in muscle homogenates. The activities of respiratory complexes I and IV were shown to significantly decrease with the age compared to the activity of the same enzymes in young animals, while the activity of citrate synthase was virtually unchanged. The fatty acid composition of muscle homogenates of old rats differed from that of young animals by a reduced content of myristic, oleic, linoleic, and α-linolenic acids and enhanced content of dihomo-γ-linolenic, arachidonic, and docosahexaenoic acids. Per oral supple-mentation of the old rats with hydrogenated peanut oil completely restored the activity of complex IV and increased the activity of complex I to 80% of the value observed in muscles of young animals, reducing the content of stearic, dihomo-γ-linolenic, arachidonic, eicosapentaenoic, docosapentaenoic, and docosahexaenoic acids relative to that in the groups of old and young rats. The content of oleic and linoleic acids increased relatively to that in the group of the old rats, as well as young animals. The possible mechanisms of the restoration of the activity of the respiratory enzymes under the administration of hydrogenated peanut oil are discussed.

This is a preview of subscription content, access via your institution.

Abbreviations

HNE:

4-hydroxy-2-nonenal, unsaturated aldehyde

ROS:

reactive oxygen species

References

  1. 1.

    Byrne, E. (2002) J. Clin. Neurosci., 9, 497–501.

    CAS  Article  PubMed  Google Scholar 

  2. 2.

    Nicholls, D. G. (2002) Int. J. Biochem. Cell Biol., 34, 1372–1381.

    CAS  Article  PubMed  Google Scholar 

  3. 3.

    Harman, D. (1956) J. Gerontol., 11, 298–300.

    CAS  PubMed  Google Scholar 

  4. 4.

    Lenaz, G. (2001) IUBMB Life, 52, 159–164.

    CAS  Article  PubMed  Google Scholar 

  5. 5.

    Skulachev, V. P. (1998) Biochim. Biophys. Acta, 1363, 100–124.

    CAS  Article  PubMed  Google Scholar 

  6. 6.

    Otani, H. (2004) Antioxid. Redox Signal., 6, 449–469.

    CAS  Article  PubMed  Google Scholar 

  7. 7.

    Pagliarini, D. J., and Dixon, J. E. (2006) Trends Biochem. Sci., 31, 26–34.

    CAS  Article  PubMed  Google Scholar 

  8. 8.

    Skulachev, V. P. (2005) IUBMB Life, 57, 305–310.

    CAS  Article  PubMed  Google Scholar 

  9. 9.

    Yamaoka, S., Urade, R., and Kito, M. (1990) J. Nutr., 120, 415–421.

    CAS  PubMed  Google Scholar 

  10. 10.

    Schonfeld, P., and Wojtczak, L. (2007) Biochim. Biophys. Acta, 1767, 1032–1040.

    Article  PubMed  Google Scholar 

  11. 11.

    Schonfeld, P., and Wojtczak, L. (2008) Free Radic. Biol. Med., 45, 231–241.

    Article  PubMed  Google Scholar 

  12. 12.

    Quiles, J. L., Martinez, E., Ibanez, S., Ochoa, J. J., Martin, Y., Lopez-Frias, M., Huertas, J. R., and Mataix, J. (2002) J. Bioenerg. Biomembr., 34, 517–524.

    CAS  Article  PubMed  Google Scholar 

  13. 13.

    Kjaer, M. A., Todorcevic, M., Torstensen, B. E., Vegusdal, A., and Ruyter, B. (2008) Lipids, 43, 813–827.

    CAS  Article  PubMed  Google Scholar 

  14. 14.

    Gerson, A., Brow, J. C. L., Thomas, R., Bernards, M. A., and Staples, J. F. (2008) J. Exp. Biol., 211, 2689–2699.

    CAS  Article  PubMed  Google Scholar 

  15. 15.

    Stark, K. D., Lim, S.-Y., and Salem, N., Jr. (2007) Lipids Health Disease, 6, 13.

    Article  Google Scholar 

  16. 16.

    Bronnikov, G. E., Kulagina, T. P., and Aripovsky, A. V. (2009) Biol. Membr. (Moscow), 26, 387–393.

    CAS  Google Scholar 

  17. 17.

    Darley-Usmar, V. M., Rickwood, D., and Wilson, M. T. (1986) Mitochondria: A Practical Approach, IRL Press Limited, London.

    Google Scholar 

  18. 18.

    Estornell, E., Fato, R., Pallotti, F., and Lenaz, G. (1993) FEBS Lett., 332, 127–131.

    CAS  Article  PubMed  Google Scholar 

  19. 19.

    Wiedemann, F. R., Vielhaber, S., Schroder, R., Elger, C. E., and Kunz, W. S. (2000) Anal. Biochem., 279, 55–60.

    CAS  Article  PubMed  Google Scholar 

  20. 20.

    Maklashina, E. O., Sled’, V. D., and Vinogradov, A. D. (1994) Biochemistry (Moscow), 59, 707–713.

    Google Scholar 

  21. 21.

    Knapp, D. R. (1979) Analytical Derivatization Reactions, Wiley Interscience, p. 166.

  22. 22.

    Kwong, L. K., and Sohal, R. S. (2000) Arch. Biochem. Biophys., 373, 16–22.

    CAS  Article  PubMed  Google Scholar 

  23. 23.

    Boffoli, D., Scacco, S. C., Vergari, R., Persio, M. T., Solarino, G., Laforgia, R., and Papa, S. (1996) Biochim. Biophys. Acta, 1315, 66–72.

    PubMed  Google Scholar 

  24. 24.

    Boffoli, D., Scacco, S. C., Vergari, R., Solarino, G., Santacroce, G., and Papa, S. (1994) Biochim. Biophys. Acta, 1226, 73–82.

    CAS  PubMed  Google Scholar 

  25. 25.

    Guerrieri, F., Capozza, G., Kalous, M., and Papa, S. (1992) Ann. NY Acad. Sci., 671, 395–402.

    CAS  Article  PubMed  Google Scholar 

  26. 26.

    Bronnikov, G. E., Rotaru, V. K., Agar, L., Lewandowski, P. A., and Linnane, A. W. (2000) in Advances in Gerontology, Vol. 5, p. 20, 2nd Europ. Congr. on Biogerontology “From Molecules to Humans” (August 25–28, St. Petersburg, Russia).

    Google Scholar 

  27. 27.

    Wallace, D. C., Lott, M. T., Shoffner, J. M., and Ballinger, S. (1994) Epilepsia, 35,Suppl. 1, 43–50.

    Article  Google Scholar 

  28. 28.

    Sipos, I., Tretter, L., and Adam-Vizi, V. J. (2003) Neurochemistry, 84, 112–118.

    CAS  Google Scholar 

  29. 29.

    Chicco, A. J., and Sparagna, G. C. (2007) Am. J. Physiol. Cell Physiol., 292, 33–44.

    Article  Google Scholar 

  30. 30.

    Musatov, A. (2006) Free Radic. Biol. Med., 41, 238–246.

    CAS  Article  PubMed  Google Scholar 

  31. 31.

    Shinzawa-Itoh, K., Aoyama, H., Muramoto, K., Terada, H., Kurauchi, T., Tadehara, Y., Yamasaki, A., Sugimura, T., Kurono, S., Tsujimoto, K., Mizushima, T., Yamashita, E., Tsukihara, T., and Yoshikawa, S. (2007) EMBO J., 26, 1713–1725.

    CAS  Article  PubMed  Google Scholar 

  32. 32.

    Qin, L., Sharpe, M. A., Garavito, R. M., and Ferguson-Miller, S. (2007) Curr. Opin. Struct. Biol., 17, 444–450.

    CAS  Article  PubMed  Google Scholar 

  33. 33.

    Qin, L., Mills, D. A., Buhrow, L., Hiser, C., and Ferguson-Miller, S. (2008) Biochemistry, 47, 9931–9933.

    CAS  Article  PubMed  Google Scholar 

  34. 34.

    Varanasi, L., Mills, D., Murphree, A., Gray, J., Purser, C., Baker, R., and Hosler, J. (2006) Biochemistry, 45, 14896–14907.

    CAS  Article  PubMed  Google Scholar 

  35. 35.

    Imre, S., Firbas, J. Y., and Noble, R. C. (2000) Arch. Gerontol. Geriatr., 31, 5–12.

    CAS  Article  PubMed  Google Scholar 

  36. 36.

    Ulmann, L., Blond, J. P., Maniongui, C., Poisson, J. P., Duran, G., Bezard, J., and Pascal, G. (1991) Lipids, 26, 127–133.

    CAS  Article  PubMed  Google Scholar 

  37. 37.

    Battino, N., Ferreiro, M. S., Littarru, G., Quiles, J. L., Ramirez-Tortoza, M. C., Huertas, J. R., Mataix, J., Villa, R. F., and Gorini, A. (2002) Free Radic. Res., 36, 479–484.

    CAS  Article  PubMed  Google Scholar 

  38. 38.

    Sevanian, A., and Hochstein, P. (1985) Annu. Rev. Nutr., 5, 365–390.

    CAS  Article  PubMed  Google Scholar 

  39. 39.

    Musatov, A., Carroll, C. A., Liu, Y.-C., Henderson, G. I., Weintraub, S. T., and Robinson, N. C. (2002) Biochemistry, 41, 8212–8220.

    CAS  Article  PubMed  Google Scholar 

  40. 40.

    Picklo, Sr. M. J., and Montine, N. J. (2007) J. Alzheimers Dis., 12, 185–193.

    CAS  PubMed  Google Scholar 

  41. 41.

    Lee, H. J., Mayette, J., Rapoport, S. I., and Bazinet, R. P. (2006) Lipids Health Dis., 5, 1–4.

    CAS  Article  Google Scholar 

  42. 42.

    Lewin, E. J., and Timiras, P. S. (1984) Mech. Ageing Dev., 24, 343–251.

    CAS  Article  PubMed  Google Scholar 

  43. 43.

    Infante, J. P., Kirwan, R. C., and Brenna, J. P. (2001) Comp. Biochem. Physiol. B. Biochem. Mol. Biol., 130, 291–298.

    CAS  Article  PubMed  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to G. E. Bronnikov.

Additional information

Original Russian Text © G. E. Bronnikov, T. P. Kulagina, A. V. Aripovsky, 2010, published in Biokhimiya, 2010, Vol. 75, No. 12, pp. 1720–1728.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Bronnikov, G.E., Kulagina, T.P. & Aripovsky, A.V. Dietary supplementation of old rats with hydrogenated peanut oil restores activities of mitochondrial respiratory complexes in skeletal muscles. Biochemistry Moscow 75, 1491–1497 (2010). https://doi.org/10.1134/S0006297910120102

Download citation

Key words

  • mitochondrial respiratory chain
  • oxidative stress
  • aging
  • fatty acid composition of lipids
  • skeletal muscles
  • vegetable oil