Skip to main content
Log in

The Quasi-Equilibrium Assumption for Bi-Bi Ordered Bisubstrate Enzymatic Reaction. How to Discriminate the Mechanism Correctly

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Application of the quasi-equilibrium assumption for the steady-state kinetics of bisubstrate irreversible enzymat- ic reactions in the case of ordered binding of substrates (Bi-Bi ordered mechanism) is considered. The necessary and suffi- cient conditions for application of the quasi-equilibrium assumption have been found and accuracy of this assumption has been numerically evaluated. The limitations on application of the quasi-equilibrium assumption have been shown and errors of its application have been analyzed. It is shown that possible discrimination of substrate binding order using asymmetrical expressions grounded on the quasi-equilibrium assumption is inconsistent because such asymmetrical expressions arise from incorrect application of the quasi-equilibrium assumption. Moreover, it has been proved in the general case that mecha- nisms generating such substrate-asymmetrical expressions for the steady-state rate of enzymatic reaction do not exist. The error source when using graphical interpretation for discrimination of mechanisms of bisubstrate enzymatic reactions has been determined. The strategy to avoid such errors is pointed out.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cha, S. (1968) J. Biol. Chem., 243, 820–825.

    CAS  PubMed  Google Scholar 

  2. Michaelis, M., and Menten, M. L. (1913) Biochem. Z., 49, 333–369.

    CAS  Google Scholar 

  3. Varon, R., Garcia-Moreno, M., Garrido, C., and Garcia-Canovas, F. (1992) Biochem. J., 288, 1072–1073.

    CAS  PubMed  Google Scholar 

  4. Segel, I. H., and Martin, R. L. (1988) J. Theor. Biol., 135, 445–453.

    Article  CAS  PubMed  Google Scholar 

  5. Kijima, H., and Kijima, S. (1982) Biophys. Chem., 16, 181–192.

    Article  CAS  PubMed  Google Scholar 

  6. Lescovac, V. (2003) Comprehensive Enzyme Kinetics, Kluwer Academic/Plenum Publishers, N. Y.

    Google Scholar 

  7. Dalziel, K. (1957) Acta Chem. Scand., 11, 1706–1723.

    Article  CAS  Google Scholar 

  8. Cleland, W. W. (1963) Biochim. Biophys. Acta, 67, 104–137.

    Article  CAS  PubMed  Google Scholar 

  9. Cornish-Bowden, E. (1979) The Basics of Enzymatic Kinetics [Russian translation], Mir, Moscow.

    Google Scholar 

  10. Volkenstein, M. V., and Magarshak, Yu. B. (1970) Biofizika, 15, 777–784.

    Google Scholar 

  11. Topham, C. M., and Brocklehurst, K. (1992) Biochem. J., 282, 261–265.

    CAS  PubMed  Google Scholar 

  12. Selwyn, M. J. (1993) Biochem. J., 295, 897–898.

    CAS  PubMed  Google Scholar 

  13. Brocklehurst, K., and Topham, C. M. (1993) Biochem. J., 295, 897–898.

    Google Scholar 

  14. Vrzheshch, P. V. (1996) Biochemistry (Moscow), 61, 1471–1493.

    Google Scholar 

  15. Vrzheshch, P. V. (2008) Biochemistry (Moscow), 73, 1114–1120.

    Article  CAS  Google Scholar 

  16. Volkenstein, M. V., and Goldstein, B. N. (1966) Biokhimiya, 31, 541–547.

    Google Scholar 

  17. Dickson, M., and Webb, E. (1982) Enzymes [Russian translation], Mir, Moscow.

  18. Cassels, R., Fears, R., and Smith, R. A. G. (1987) Biochem. J., 247, 395–400.

    CAS  PubMed  Google Scholar 

  19. Young, P. R., and Waickus, C. M. (1988) Biochem. J., 250, 221–226.

    CAS  PubMed  Google Scholar 

  20. Campbell, J. S., and Karavolas, H. J. (1989) J. Steroid Biochem., 32, 283–289.

    Article  CAS  PubMed  Google Scholar 

  21. Glendening, T. M., and Poulton, J. E. (1990) Plant. Physiol., 94, 811–818.

    Article  CAS  PubMed  Google Scholar 

  22. Cunningham, O., Gore, M. G., and Mantle, T. J. (2000) Biochem. J., 345, 393–399.

    Article  CAS  PubMed  Google Scholar 

  23. Khanna, P., and Schuman, J. M. (2001) Biochemistry, 40, 1451–1459.

    Article  CAS  PubMed  Google Scholar 

  24. Imrishkova, I., Langley, E., Arreguin-Espinosa, R., Aguilar, G., Pardo, J. P., and Sanchez, S. (2001) Arch. Biochem. Biophys., 394, 137–144.

    Article  Google Scholar 

  25. Imrishkova, I., Arreguin-Espinosa, R., Guzman, S., Rodriguez-Sanoja, R., Langley, E., and Sanchez, S. (2005) Res. Microbiol., 156, 351–366.

    Google Scholar 

  26. Chou, C.-F., Lai, C.-L., Chang, Y.-C., Duester, G., and Yin, S.-J. (2002) J. Biol. Chem., 277, 25209–25216.

    Article  CAS  PubMed  Google Scholar 

  27. Vogt, R. N., Steenkamp, D. J., Zheng, R., and Blanchard, J. S. (2003) Biochem. J., 374, 657–666.

    Article  CAS  PubMed  Google Scholar 

  28. Gao, B., and Ellis, H. R. (2005) Biochem. Biophys. Res. Commun., 331, 1137–1145.

    Article  CAS  PubMed  Google Scholar 

  29. Gargouri, M., Gallois, B., and Chaudiere, J. (2009) Arch. Biochem. Biophys., 491, 61–68.

    Article  CAS  PubMed  Google Scholar 

  30. Bulusu, V., Srinivasan, B., Bopanna, M. P., and Balaram, H. (2009) Biochim. Biophys. Acta, 1794, 642–654.

    CAS  PubMed  Google Scholar 

  31. Dean, A. M., and Dvorak, L. (1995) Protein Sci., 4, 2156–2167.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. V. Vrzheshch.

Additional information

Original Russian Text © P. V. Vrzheshch, 2010, published in Biokhimiya, 2010, Vol. 75, No. 11, pp. 1560–1570.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vrzheshch, P.V. The Quasi-Equilibrium Assumption for Bi-Bi Ordered Bisubstrate Enzymatic Reaction. How to Discriminate the Mechanism Correctly. Biochemistry Moscow 75, 1374–1382 (2010). https://doi.org/10.1134/S000629791011009X

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S000629791011009X

Key words

Navigation