Skip to main content
Log in

Catalase Activity of Cytochrome c Oxidase Assayed with Hydrogen Peroxide-Sensitive Electrode Microsensor

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

An iron-hexacyanide-covered microelectrode sensor has been used to continuously monitor the kinetics of hydrogen peroxide decomposition catalyzed by oxidized cytochrome oxidase. At cytochrome oxidase concentration ≈1 μM, the catalase activity behaves as a first order process with respect to peroxide at concentrations up to ≈300–400 μM and is fully blocked by heat inactivation of the enzyme. The catalase (or, rather, pseudocatalase) activity of bovine cytochrome oxi- dase is characterized by a second order rate constant of ≈2•102 M-1•sec-1 at pH 7.0 and room temperature, which, when divided by the number of H2O2 molecules disappearing in one catalytic turnover (between 2 and 3), agrees reasonably well with the second order rate constant for H2O2-dependent conversion of the oxidase intermediate FI-607 to FII-580. Accordingly, the catalase activity of bovine oxidase may be explained by H2O2 procession in the oxygen-reducing center of the enzyme yielding superoxide radicals. Much higher specific rates of H2O2 decomposition are observed with preparations of the bacterial cytochrome c oxidase from Rhodobacter sphaeroides. The observed second order rate constants (up to ≈3000 M-1•sec-1) exceed the rate constant of peroxide binding with the oxygen-reducing center of the oxidized enzyme (≈500 M-1•sec-1) several-fold and therefore cannot be explained by catalytic reaction in the a 3/CuB site of the enzyme. It is proposed that in the bacterial oxidase, H2O2 can be decomposed by reacting with the adventitious transition metal ions bound by the polyhistidine-tag present in the enzyme, or by virtue of reaction with the tightly-bound Mn2+, which in the bacterial enzyme substitutes for Mg2+ present in the mitochondrial oxidase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tsukihara, T., Aoyama, H., Yamashita, E., Takashi, T., Yamaguichi, H., Shinzawa-Itoh, K., Nakashima, R., Yaono, R., and Yoshikawa, S. (1996) Science, 272, 1136–1144.

    Article  CAS  PubMed  Google Scholar 

  2. Ostermeier, C., Harrenga, A., Ermler, U., and Michel, H. (1997) Proc. Natl. Acad. Sci. USA, 94, 10547–10553.

    Article  CAS  PubMed  Google Scholar 

  3. Svensson-Ek, M., Abramson, J., Larsson, G., Tornroth, S., Brzezinski, P., and Iwata, S. (2002) J. Mol. Biol., 321, 329–339.

    Article  CAS  PubMed  Google Scholar 

  4. Qin, L., Hiser, C., Mulichak, A., Garavito, R. M., and Ferguson-Miller, S. (2006) Proc. Natl. Acad. Sci. USA, 103, 16117–16122.

    Article  CAS  PubMed  Google Scholar 

  5. Soulimane, T., Buse, G., Bourenkov, G. B., Bartunik, H. D., Huber, R., and Than, M. E. (2000) EMBO J., 19, 1766–1776.

    Article  CAS  PubMed  Google Scholar 

  6. Ferguson-Miller, S., and Babcock, G. T. (1996) Chem. Rev., 7, 2889–2907.

    Article  Google Scholar 

  7. Belevich, I., and Verkhovsky, M. I. (2008) Antioxidants and Redox Signaling, 10, 1–29.

    Article  CAS  PubMed  Google Scholar 

  8. Einarsdottir, O., and Szundi, I. (2004) Biochim. Biophys. Acta, 1655, 263–273.

    Article  CAS  PubMed  Google Scholar 

  9. Konstantinov, A. A., Siletsky, S., Mitchell, D., Kaulen, A., and Gennis, R. B. (1997) Proc. Natl. Acad. Sci. USA, 94, 9085–9090.

    Article  CAS  PubMed  Google Scholar 

  10. Vygodina, T. V., Pecoraro, C., Mitchell, D., Gennis, R., and Konstantinov, A. A. (1998) Biochemistry, 37, 3053–3061.

    Article  CAS  PubMed  Google Scholar 

  11. Bickar, D., Bonaventura, J., and Bonaventura, C. (1982) Biochemistry, 21, 2661–2666.

    Article  CAS  PubMed  Google Scholar 

  12. Wrigglesworth, J. (1984) Biochem. J., 217, 715–719.

    CAS  PubMed  Google Scholar 

  13. Vygodina, T. V., and Konstantinov, A. A. (1987) FEBS Lett., 219, 387–392.

    Article  CAS  PubMed  Google Scholar 

  14. Vygodina, T., and Konstantinov, A. (1989) Biochim. Biophys. Acta, 973, 390–398.

    Article  CAS  PubMed  Google Scholar 

  15. Vygodina, T. V., and Konstantinov, A. A. (1988) Ann. NY Acad. Sci., 550, 124–138.

    Article  CAS  PubMed  Google Scholar 

  16. Vygodina, T. V., and Konstantinov, A. A. (2007) Biochemistry (Moscow) 72, 1056–1064.

    Article  CAS  Google Scholar 

  17. Pecoraro, C., Gennis, R. B., Vygodina, T. V., and Konstantinov, A. A. (2001) Biochemistry, 40, 9695–9708.

    Article  CAS  PubMed  Google Scholar 

  18. Proshlyakov, D. A., Pressler, M. A., DeMaso, C., Leykam, J. F., DeWitt, D. L., and Babcock, G. L. (2000) Science, 290, 1588–1591.

    Article  CAS  PubMed  Google Scholar 

  19. Ksenzenko, M. Y., Berka, V., Vygodina, T. V., Ruuge, E. K., and Konstantinov, A. A. (1992) FEBS Lett., 297, 63–66.

    Article  CAS  PubMed  Google Scholar 

  20. Konstantinov, A. A., Capitanio, N., Vygodina, T. V., and Papa, S. (1992) FEBS Lett., 312, 71–74.

    Article  CAS  PubMed  Google Scholar 

  21. Kato, S., Ueno, T., Fukuzumi, S., and Watanabe, Y. (2004) J. Biol. Chem., 279, 52376–52381.

    Article  CAS  PubMed  Google Scholar 

  22. Marquez, L. A., Huang, J. T., and Dunford, H. B. (1994) Biochemistry, 33, 1447–1454.

    Article  CAS  PubMed  Google Scholar 

  23. Kettle, A. J., and Winterbourn, C. C. (2001) Biochemistry, 40, 10204–10212.

    Article  CAS  PubMed  Google Scholar 

  24. Orii, Y., and Okunuki, K. (1963) J. Biochem., 54, 207–213.

    CAS  PubMed  Google Scholar 

  25. Gorren, A. C. F., Dekker, H., and Wever, R. (1985) Biochim. Biophys. Acta, 809, 90–96.

    Article  CAS  PubMed  Google Scholar 

  26. Bergmayer, H. U., Gawehn, K., and Grassl, M. (1970) in Methoden der Enzymatischen Analyze, Vol. 1 (Bergmayer, H. U., ed.) Verlag Chemie, Weinheim.

    Google Scholar 

  27. Sellers, R. M. (1980) Analyst, 105, 950–954.

    Article  CAS  Google Scholar 

  28. Nourooz-Zadeh, J. (1999) Meth. Enzymol., 300, 58–62.

    Article  CAS  PubMed  Google Scholar 

  29. Puganova, E. A., Komarov, A. V., Vagin, M. Yu., Karyakina, E. E., and Karyakin, A. A. (2004) Nano- and Microsystem Technique (Moscow), 12, 42–44.

    Google Scholar 

  30. Karyakin, A. A., Gitelmacher, O. V., and Karyakina, E. E. (1994) Analyt. Lett., 27, 2861–2869.

    CAS  Google Scholar 

  31. Karyakin, A. A. (2007) in Electrochemical Sensors, Biosensors and Their Biomedical Applications (Zhang, X., Ju, H., and Wang, J., eds.) Academic Press (Elsevier), Amsterdam-New York, p. 616.

    Google Scholar 

  32. Karyakin, A. A., and Karyakina, E. E. (1999) Sensors and Actuators, B. 57, 268–273.

    Article  Google Scholar 

  33. Fowler, L. R., Richardson, S. H., and Hatefi, Y. (1962) Biochim. Biophys. Acta, 64, 170–173.

    Article  CAS  PubMed  Google Scholar 

  34. Mitchell, D. M., and Gennis, R. B. (1995) FEBS Lett., 368, 148–150.

    Article  CAS  PubMed  Google Scholar 

  35. Chakrabortya, S., and Raj, C. R. (2009) Biosensors and Bioelectronics, 24, 3264–3268.

    Article  Google Scholar 

  36. Weng, L., and Baker, G. M. (1991) Biochemistry, 30, 5727–5733.

    Article  CAS  PubMed  Google Scholar 

  37. Qin, L., Liu, J., Mills, D. A., Proshlyakov, D. A., Hiser, C., and Ferguson-Miller, S. (2009) Biochemistry, 48, 5121–5130.

    Article  CAS  PubMed  Google Scholar 

  38. Sharpe, M. A., Krzyaniak, M. D., Xu, S., McCracken, J., and Ferguson-Miller, S. (2009) Biochemistry, 48, 328–335.

    Article  CAS  PubMed  Google Scholar 

  39. Barynin, V. V., Whittaker, M. M., Antonyuk, S., Lamzin, V. S., Harrison, P. M., Artymiuk, P. J., and Whittaker, J. W. (2001) Structure, 9, 725–738.

    Article  CAS  PubMed  Google Scholar 

  40. McClune, G. J., and Fee, J. A. (1976) FEBS Lett., 67, 294–298.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Konstantinov.

Additional information

Published in Russian in Biokhimiya, 2010, Vol. 75, No. 11, pp. 1533–1543.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bolshakov, I.A., Vygodina, T.V., Gennis, R. et al. Catalase Activity of Cytochrome c Oxidase Assayed with Hydrogen Peroxide-Sensitive Electrode Microsensor. Biochemistry Moscow 75, 1352–1360 (2010). https://doi.org/10.1134/S0006297910110064

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297910110064

Key words

Navigation