Skip to main content
Log in

Glutamine effect on cultured granule neuron death induced by glucose deprivation and chemical hypoxia

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Using a specific fluorescent probe of mitochondrial membrane potential (tetramethylrhodamine ethyl ester), we have shown that glucose deprivation (GD) of cultured cerebellar granule neurons (CGN) for 3 h lowers mitochondrial membrane potential in these cells. Longer glucose starvation (24 h) causes CGN death that is not prevented by blockers of ionotropic glutamate receptors (MK-801 (10 μM) and NBQX (10 μM)). Glutamine or pyruvate (2 mM) maintain membrane potential of mitochondria and decrease CGN death under GD conditions. In the presence of glucose the mitochondrial respiratory chain blocker rotenone induces neuron death potentiated by glutamine. The potentiation effect is completely prevented by blockers of ionotropic glutamate receptors. These results show that glutamine under conditions of GD can be utilized by mitochondria as substrate, but at the same time, in the case of mitochondrial function deterioration, metabolism of this amino acid results in glutamate accumulation to toxic level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

APV:

aminophosphonovalerate

CGN:

cultured granule neurons

GD:

glucose deprivation

NBQX:

2,3-dioxo-6-nitro-1,2,3,4-tetra-hydrobenzoquinoxaline-7-sulfonamide

NMDA:

N-methyl-D-aspartate

MK-801:

(+)-5-methyl-10,11-dihydro-5H-dibenzo(a,d)cycloheptene-5,10-imino-maleate

TMRE:

tetramethylrhodamine ethyl ester

References

  1. Newcomb, R., Sun, X., Taylor, L., Curthoys, N., and Giffard, R. G. (1997) J. Biol. Chem., 272, 11276–11282.

    Article  CAS  PubMed  Google Scholar 

  2. Newcomb, R., Pierce, A. R., Kano, T., Meng, W., Bosque-Hamilton, P., Taylor, L., Curthoys, N., and Lo, E. H. (1998) Brain Res., 813, 103–111.

    Article  CAS  PubMed  Google Scholar 

  3. Goldberg, M. P., Monyer, H., and Choi, D. W. (1988) Neurosci. Lett., 94, 52–57.

    Article  CAS  PubMed  Google Scholar 

  4. Stelmashook, E. V., Isaev, N. K., and Zorov, D. B. (2007) Toxicol. Lett., 174, 82–88.

    Article  CAS  PubMed  Google Scholar 

  5. Monyer, H., and Choi, D. W. G. (1990) J. Cereb. Blood Flow Metab., 10, 337–342.

    CAS  PubMed  Google Scholar 

  6. Peng, L., Gu, L., Zhang, H., Huang, X., Hertz, E., and Hertz, L. (2007) J. Neurosci. Res., 85, 3480–3486.

    Article  CAS  PubMed  Google Scholar 

  7. Auer, R. N., and Siesjo, B. K. (1993) Baillieres Clin. Endocrinol. Metab., 7, 611–625.

    Article  CAS  PubMed  Google Scholar 

  8. Sutherland, G. R., Tyson, R. L., and Auer, R. N. (2008) Med. Chem., 4, 379–385.

    Article  CAS  PubMed  Google Scholar 

  9. Ashmarin, I. P., Stukalova, P. V., Eshchenko, N. D., et al. (1999) in Brain Biochemistry (Ashmarin, I. P., Stukalova, P. V., and Eshchenko, N. D., eds.) [in Russian], St. Petersburg Publishing House, pp. 124–159.

  10. Abdul-Ghani, A. S., Ghneim, H., El-Lati, S., and Saca’an, A. (1989) Int. J. Neurosci., 44, 67–74.

    Article  CAS  PubMed  Google Scholar 

  11. Honegger, P., Braissant, O., Henry, H., Boulat, O., Bachmann, C., Zurich, M. G., and Pardo, B. (2002) J. Neurochem., 81, 1141–1151.

    Article  CAS  PubMed  Google Scholar 

  12. Huang, R., and Hertz, L. (1994) Brain Res., 660, 129–137.

    Article  CAS  PubMed  Google Scholar 

  13. Isaev, N. K., Stelmashook, E. V., Dirnagl, W., Plotnikov, E. Yu., Kuvshinova, E. A., and Zorov, D. B. (2008) Biochemistry (Moscow), 73, 149–155.

    Article  CAS  Google Scholar 

  14. Stelmashook, E. V., Isaev, N. K., Plotnikov, E. Y., Uzbekov, R. E., Alieva, I. B., Arbeille, B., and Zorov, D. B. (2009) Neurosci. Lett., 461, 140–144.

    Article  CAS  PubMed  Google Scholar 

  15. Bouvier, M., Szatkowski, M., Amato, A., and Attwell, D. (1992) Nature, 360, 471–474.

    Article  CAS  PubMed  Google Scholar 

  16. Petito, C. K., Chung, M. C., Verkhovsky, L. M., and Cooper, A. J. (1992) Brain Res., 569, 275–280.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. V. Stelmashook.

Additional information

Original Russian Text © E. V. Stelmashook, S. V. Novikova, N. K. Isaev, 2010, published in Biokhimiya, 2010, Vol. 75, No. 8, pp. 1150–1156.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stelmashook, E.V., Novikova, S.V. & Isaev, N.K. Glutamine effect on cultured granule neuron death induced by glucose deprivation and chemical hypoxia. Biochemistry Moscow 75, 1039–1044 (2010). https://doi.org/10.1134/S0006297910080134

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297910080134

Key words

Navigation