Skip to main content
Log in

Comparison of models of thrombin-binding 15-mer DNA aptamer by molecular dynamics simulation

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Two models of 15-mer thrombin-binding DNA aptamer (15TGT) were comparatively analyzed by molecular dynamics simulation using the GROMACS software package. The two original models of 15TGT were obtained by NMR and X-ray analyses. The models significantly differ in the topology of loops and the direction of oligodeoxyribonucleotide chain. The evolution of the two structures in parm99 force fields and parmbsc0 optimized for nucleic acids was analyzed in our adaptation of GROMACS architecture. It is shown that the best system for description of the 15TGT structure is the model obtained by X-ray analysis in the parmbsc0 force field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nimjee, S. M., Rusconi, C. P., and Sullenger, B. A. (2005) Annu. Rev. Med., 56, 555–583.

    Article  CAS  PubMed  Google Scholar 

  2. Shamah, S. M., Healy, J. M., and Cload, S. T. (2008) Acc. Chem. Res., 41, 130–138.

    Article  CAS  PubMed  Google Scholar 

  3. Tuerk, C., and Gold, L. (1990) Science, 249, 505–510.

    Article  CAS  PubMed  Google Scholar 

  4. Bock, L. C., Griffin, J. L., Latham, C. A., Vermaas, E. H., and Toole, J. J. (1992) Nature, 355, 564–566.

    Article  CAS  PubMed  Google Scholar 

  5. Macaya, R. F., Schultze, P., Smith, F. W., Roe, J. A., and Feigon, J. (1993) Proc. Natl. Acad. Sci. USA, 90, 3745–3749.

    Article  CAS  PubMed  Google Scholar 

  6. Tasset, D. M., Kubik, M. F., and Steiner, W. (1997) J. Mol. Biol., 272, 688–698.

    Article  CAS  PubMed  Google Scholar 

  7. Padmanabhan, K., Padmanabhan, K. P., Ferrara, J. D., Sadler, J. E., and Tulinsky, A. (1993) J. Biol. Chem., 268, 17651–17654.

    CAS  PubMed  Google Scholar 

  8. Schultze, P., Macaya, R. F., and Feigon, J. (1994) J. Mol. Biol., 235, 1532–1547.

    Article  CAS  PubMed  Google Scholar 

  9. Padmanabhan, K., and Tulinsky, A. (1996) Acta Crystallogr. Biol. Crystallogr., 52, 272–282.

    Article  CAS  Google Scholar 

  10. Mao, X., Marky, L. A., and Gmeiner, W. H. (2004) J. Biomol. Struct. Dyn., 22, 25–33.

    CAS  PubMed  Google Scholar 

  11. Marathias, V. M., and Bolton, P. H. (2000) Nucleic Acids Res., 28, 1969–1977.

    Article  CAS  PubMed  Google Scholar 

  12. Kelly, J. A., Feigon, J., and Yeates, T. O. (1996) J. Mol. Biol., 256, 417–422.

    Article  CAS  PubMed  Google Scholar 

  13. Ikebukuro, K., Okumura, Y., Sumikura, K., and Karube, I. (2005) Nucleic Acids Res., 33, 108.

    Article  Google Scholar 

  14. Hecke, A., and Mayer, G. (2005) J. Am. Chem. Soc., 127, 822–823.

    Article  Google Scholar 

  15. Mendelboum, R. A., Horvath, J., Aradi, Z., Bagoly, F., Fazakas, Z., et al. (2008) J. Thromb. Haemost., 6, 1764–1771.

    Article  Google Scholar 

  16. Fadrna, E., Spackova, N., Stefl, R. J., Koca, T. E., Cheatham, T. E., and Sponer, J. (2004) Biophys. J., 87, 227–242.

    Article  CAS  PubMed  Google Scholar 

  17. Fadrna, N., Spackova, J., Sarzynska, J., Koca, M., Orozco, M., Cheatham, T. E., et al. (2009) J. Chem. Theory Comput., 5, 2514–2530.

    Article  CAS  Google Scholar 

  18. Sponer, J., and Spackova, N. (2007) Methods, 43, 278–290.

    Article  CAS  PubMed  Google Scholar 

  19. Hazel, P., Parkinson, G. N., and Neidle, S. (2006) Nucleic Acids Res., 34, 2117–2127.

    Article  CAS  PubMed  Google Scholar 

  20. Haider, S., Parkinson, G. N., and Neidle, S. (2008) Biophys. J., 95, 296–311.

    Article  CAS  PubMed  Google Scholar 

  21. Neidle, S. (2009) Curr. Opin. Struct. Biol., 19, 239–250.

    Article  CAS  PubMed  Google Scholar 

  22. Pagano, B., Martino, L., Randazzo, A., and Giancola, C. (2008) Biophys. J., 94, 562–569.

    Article  CAS  PubMed  Google Scholar 

  23. Perez, A., Marchan, I., Svozil, D., Sponer, J., Cheatham, T. E., et al. (2007) Biophys. J., 92, 3817–3829.

    Article  CAS  PubMed  Google Scholar 

  24. Perez, A., Luque, F. J., and Orozco, M. (2007) J. Am. Chem. Soc., 129, 14739–14745.

    Article  CAS  PubMed  Google Scholar 

  25. Jayapal, P., Mayer, G., Heckel, A., and Wennmohs, F. (2009) J. Struct. Biol., 166, 241–250.

    Article  CAS  PubMed  Google Scholar 

  26. Lindahl, E., Hess, B., and van der Spoel, D. (2001) J. Mol. Mod., 7, 306–317.

    CAS  Google Scholar 

  27. Van der Spoel, D., Lindahl, E., Hess, B., Groenhof, G., Mark, A. E., and Berendsen, H. J. C. (2005) J. Comput. Chem., 26, 1701–1718.

    Article  Google Scholar 

  28. Hess, B., Kutzner, C., van der Spoel, D., and Lindahl, E. (2008) J. Chem. Theory Comput., 4, 435–447.

    Article  CAS  Google Scholar 

  29. Cornell, W., Cieplak, P., Bayly, C., Gould, I., Merz, K., et al. (1995) J. Am. Chem. Soc., 117, 5179–5197.

    Article  CAS  Google Scholar 

  30. Sorin E. J., and Pande, V. S. (2005) Biophys. J., 88, 2472–2493.

    Article  CAS  PubMed  Google Scholar 

  31. Bussi, G., Donadio, D., and Parrinello, M. (2007) J. Chem. Phys., 126, 014101–014107.

    Article  PubMed  Google Scholar 

  32. Darden, T. D., York, D., and Pedersen, L. (1993) J. Chem. Phys., 98, 10089–10092.

    Article  CAS  Google Scholar 

  33. Jorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W., and Klein, M. L. (1983) J. Chem. Phys., 79, 926–935.

    Article  CAS  Google Scholar 

  34. Orozco, M., Noy, A., and Perez, A. (2008) Curr. Opin. Struct. Biol., 18, 185–193.

    CAS  PubMed  Google Scholar 

  35. Mao, X., and Gmeiner, W. H. (2005) Biophys. Chem., 113, 155–160.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. V. Reshetnikov.

Additional information

Original Russian Text © R. V. Reshetnikov, A. V. Golovin, A. M. Kopylov, 2010, published in Biokhimiya, 2010, Vol. 75, No. 8, pp. 1124–1132.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reshetnikov, R.V., Golovin, A.V. & Kopylov, A.M. Comparison of models of thrombin-binding 15-mer DNA aptamer by molecular dynamics simulation. Biochemistry Moscow 75, 1017–1024 (2010). https://doi.org/10.1134/S0006297910080109

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297910080109

Key words

Navigation