Skip to main content
Log in

A new acylamidase from Rhodococcus erythropolis TA37 can hydrolyze N-substituted amides

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

A new acylamidase was isolated from Rhodococcus erythropolis TA37 and characterized. N-Substituted acrylamides (isopropyl acrylamide, N,N-dimethyl-aminopropyl acrylamide, and methylene-bis-acrylamide), acid para-nitroanilides (4′-nitroacetanilide, Gly-pNA, Ala-pNA, Leu-pNA), and N-acetyl derivatives of glycine, alanine, and leucine are good substrates for this enzyme. Aliphatic amides (acetamide, acrylamide, isobutyramide, n-butyramide, and valeramide) are also used as substrates but with less efficiency. The enzyme subunit mass by SDS-PAGE is 55 kDa. Maximal activity is exhibited at pH 7–8 and 55°C. The enzyme is stable for 15 h at 22°C and for 0.5 h at 45°C. The Michaelis constant (K m) is 0.25 mM with Gly-pNA and 0.55 mM with Ala-pNA. The acylamidase activity is suppressed by inhibitors of serine proteases (phenylmethylsulfonyl fluoride and diisopropyl fluorophosphate) but is not suppressed by inhibitors of aliphatic amidases (acetaldehyde and nitrophenyl disulfides). The N-terminal amino acid sequence of the acylamidase is highly homologous to those of two putative amidases detected from sequenced R. erythropolis genomes. It is suggested that the acylamidase together with the detected homologs forms a new class within the amidase signature family.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

Ala-pNA:

alanine para-nitroanilide

DIFP:

diisopropyl fluorophosphate

Gly-pNA:

glycine para-nitroanilide

Leu-pNA:

leucine para-nitroanilide

NAA:

4′-nitroacetanilide

PMSF:

phenylmethylsulfonyl fluoride

References

  1. Finn, R., Mistry, J., Tate, J., Coggill, P., Heger, A., et al. (2009) Nucleic Acids Res., 17, D211–D222.

    Google Scholar 

  2. Bork, P., and Koonin, E. (1994) Protein Sci., 3, 1344–1346.

    Article  CAS  PubMed  Google Scholar 

  3. Kotlova, E. K., Chestukhina, G. G., Astaurova, O. B., Leonova, T. E., Yanenko, A. S., and Debabov, V. G. (1999) Biochemistry (Moscow), 64, 384–389.

    CAS  Google Scholar 

  4. Pertsovich, S. I., Guranda, D. T., Podchernyaev, D. A., Yanenko, A. S., and Svedas, V. K. (2005) Biochemistry (Moscow), 70, 1280–1287.

    Article  CAS  Google Scholar 

  5. Fournand, D., and Arnaud, A. (2001) J. Appl. Microbiol., 91, 381–393.

    Article  CAS  PubMed  Google Scholar 

  6. McKinney, M., and Cravatt, B. (2003) J. Biol. Chem., 26, 37393–37399.

    Article  Google Scholar 

  7. Kobayashi, M., Fujiwara, Y., Goda, M., Komeda, H., and Shimizu, S. (1997) Proc. Natl. Acad. Sci. USA, 94, 11986–11991.

    Article  CAS  PubMed  Google Scholar 

  8. Labahn, J., Neumann, S., Buldt, G., Kula, M., and Granzin, J. (2002) J. Mol. Biol., 4, 1053–1064.

    Article  Google Scholar 

  9. Mayaux, J., Cerebelaud, E., Soubrier, F., Faucher, D., and Petre, D. (1990) J. Bacteriol., 172, 6764–6773.

    CAS  PubMed  Google Scholar 

  10. Hirrlinger, B., Stolz, A., and Knackmuss, H. (1996) J. Bacteriol., 178, 3501–3507.

    CAS  PubMed  Google Scholar 

  11. Abramova, L. I., Bajburdov, T. A., Grigoryan, E. P., Zilberman, E. N., Kurenkov, V. F., et al. (1992) Polyacrylamide (Kurenkov, V. F., ed.) [in Russian], Khimiya, Moscow.

    Google Scholar 

  12. Boger, D., Fecik, R., Patterson, J., Miyauchi, H., Patricelli, M., and Cravatt, B. (2000) Bioorg. Med. Chem. Lett., 4, 2613–2616.

    Article  Google Scholar 

  13. Grinberg, V., Burova, T., Grinberg, N., Shcherbakova, T., Guranda, D., et al. (2008) Biochim. Biophys. Acta, 1784, 736–746.

    CAS  PubMed  Google Scholar 

  14. Laemmli, U. (1970) Nature, 15, 680–685.

    Article  Google Scholar 

  15. D’Abusco, A., Ammendola, S., Scandurra, R., and Politi, L. (2001) Extremophiles, 5, 183–192.

    Article  PubMed  Google Scholar 

  16. Ciskanik, L., Wilczek, J., and Fallon, R. (1995) Appl. Environ. Microbiol., 61, 998–1003.

    CAS  PubMed  Google Scholar 

  17. Komeda, H., Harada, H., Washika, S., Sakamoto, T., Ueda, M., and Asano, Y. (2004) Eur. J. Biochem., 271, 1580–1590.

    Article  CAS  PubMed  Google Scholar 

  18. Hayatsu, M., Mizutani, A., Hashimoto, M., Sato, K., and Hayano, K. (2001) FEMS Microbiol. Lett., 10, 99–103.

    Article  Google Scholar 

  19. Gopalakrishna, K., Stewart, B., Kneen, M., Andricopulo, A., Kenyon, G., and McLeish, M. (2004) Biochemistry, 22, 7725–7735.

    Article  Google Scholar 

  20. Wei, Y., Kurihara, T., Suzuki, T., and Esaki, N. (2003) J. Mol. Cat. B: Enzymatic, 23, 357–365.

    Article  CAS  Google Scholar 

  21. Shin, S., Yun, Y., Koo, H., Kim, Y., Choi, K., and Oh, B. (2003) J. Biol. Chem., 4, 24937–24943.

    Article  Google Scholar 

  22. Kobayashi, M., Komeda, H., Nagasawa, T., Nishiyama, M., Horinouchi, S., Beppu, T., Yamada, H., and Shimizu, S. (1993) Eur. J. Biochem., 217, 327–336.

    Article  CAS  PubMed  Google Scholar 

  23. Fournand, D., Bigey, F., and Arnaud, A. (1998) Appl. Environ. Microbiol., 64, 2844–2852.

    CAS  PubMed  Google Scholar 

  24. Hirrlinger, B., Stolz, A., and Knackmuss, H. (1996) J. Bacteriol., 178, 3501–3507.

    CAS  PubMed  Google Scholar 

  25. Altschul, S., Gish, W., Miller, W., Myers, E., and Lipman, D. (1990) J. Mol. Biol., 215, 403–410.

    CAS  PubMed  Google Scholar 

  26. O’Mahony, R., Doran, J., Coffey, L., Cahill, O., Black, G., and O’Reilly, C. (2005) Antonie van Leeuwenhoek, 87, 221–232.

    Article  PubMed  Google Scholar 

  27. Marchler-Bauer, A., Anderson, J., Chitsaz, F., Derbyshire, M., DeWeese-Scott, C., et al. (2009) Nucleic Acids Res., 37, 205–210.

    Article  Google Scholar 

  28. The UniProt Consortium (2009) Nucleic Acids Res., 37, D169–D174.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Yanenko.

Additional information

Original Russian Text © K. V. Lavrov, I. A. Zalunin, E. K. Kotlova, A. S. Yanenko, 2010, published in Biokhimiya, 2010, Vol. 75, No. 8, pp. 1111–1119.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lavrov, K.V., Zalunin, I.A., Kotlova, E.K. et al. A new acylamidase from Rhodococcus erythropolis TA37 can hydrolyze N-substituted amides. Biochemistry Moscow 75, 1006–1013 (2010). https://doi.org/10.1134/S0006297910080080

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297910080080

Key words

Navigation