Skip to main content
Log in

Isoforms of human O-GlcNAcase show distinct catalytic efficiencies

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

An Errata to this article was published on 27 October 2010

Abstract

O-GlcNAcase (OGA) is a family 84 glycoside hydrolase catalyzing the hydrolytic cleavage of O-linked β-N-acetylglucosamine (O-GlcNAc) from serine and threonine residues of proteins. Thus far, three forms of OGA have been identified in humans. Here we optimized the expression of these isoforms in E. coli and characterized their kinetic properties. Using Geno 3D, we predicted that N-terminal amino acids 63–342 form the catalytic site for O-GlcNAc removal and characterized it. Large differences are observed in the Km value and catalytic efficiency (kcat/Km) for the three OGA variants, though all of them displayed O-GlcNAc hydrolase activity. The full-length OGA had the lowest Km value of 0.26 mM and the highest catalytic efficiency of 3.51·103. These results reveal that the N-terminal region (a.a. 1–350) of OGA contains the catalytic site for glycoside hydrolase and the C-terminal region of the coding sequence has the ability to stabilize the native three-dimensional structure and further affect substrate affinity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

DTT:

dithiothreitol

fOGA:

full-length O-GlcNAcase

IPTG:

isopropyl-L-thio-β-D-galactopyranoside

LB:

Luria-Bertani (broth)

MGEA5:

meningioma expressed antigen 5

4-MU-GlcNAc:

4-methylumbelliferyl-2-acetamido-2-deoxy-β-D-glucopyranoside

OGA:

O-GlcNAcase

PCD:

programmed cell death

sOGA:

the shortest OGA

vOGA:

variant of OGA

References

  1. Henrissat, B., and Bairoch, A. (1996) Biochem. J., 316, 695–696.

    PubMed  Google Scholar 

  2. Wells, H., Vosseller, K., and Hart, G. W. (2001) Science, 291, 2376–2378.

    Article  CAS  PubMed  Google Scholar 

  3. Torres, C. R., and Hart, G. W. (1984) J. Biol. Chem., 259, 3308–3317.

    CAS  PubMed  Google Scholar 

  4. Hart, G. W., Housley, M. P., and Slawson, C. (2007) Nature, 446, 1017–1022.

    Article  CAS  PubMed  Google Scholar 

  5. Zeidan, Q., and Hart, G. W. (2010) J. Cell. Sci., 123, 13–22.

    Article  CAS  PubMed  Google Scholar 

  6. Zhang, F., Su, K., Yang, X., Bowe, D. B., Paterson, A. J., and Kudlow, J. E. (2003) Cell, 115, 715–725.

    Article  CAS  PubMed  Google Scholar 

  7. Yang, X., Ongusaha, P. P., Miles, P. D., Havstad, J. C., Zhang, F., So, W. V., Kudlow, J. E., Michell, R. H., Olefsky, J. M., and Field, S. J. (2008) Nature, 451, 964–969.

    Article  CAS  PubMed  Google Scholar 

  8. Fischer, P. M. (2008) Nat. Chem. Biol., 4, 448–449.

    Article  CAS  PubMed  Google Scholar 

  9. Kang, J. G., Park, S. Y., Ji, S., Jang, I., Park, S., and Kim, H. S. (2009) J. Biol. Chem., 284, 34777–34784.

    Article  CAS  PubMed  Google Scholar 

  10. Lubas, W. A., Frank, D. W., Krause, M., and Hanover, J. A. (1997) J. Biol. Chem., 272, 9316–9324.

    Article  CAS  PubMed  Google Scholar 

  11. Gao, Y., Wells, L., Comer, F. I., Parker, G. J., and Hart, G. W. (2001) J. Biol. Chem., 276, 9838–9845.

    Article  CAS  PubMed  Google Scholar 

  12. Bertram, L., Blacker, D., Mullin, K., Keeney, D., Jones, J., Basu, S., Yhu, S., and Tanzi, R. E. (2000) Science, 290, 2302–2303.

    Article  CAS  PubMed  Google Scholar 

  13. Schultz, J., and Pils, B. (2002) FEBS Lett., 529, 179–182.

    Article  CAS  PubMed  Google Scholar 

  14. Comtesse, N., Maldener, E., and Meese, E. (2001) Biochem. Biophys. Res. Commun., 283, 634–640.

    Article  CAS  PubMed  Google Scholar 

  15. Wells, L., Gao, Y., Mahoney, J. A., Vosseller, K., Chen, C., Rosen, A., and Hart, G. W. (2002) J. Biol. Chem., 277, 1755–1761.

    Article  PubMed  Google Scholar 

  16. Bradford, M. M. (1976) Anal. Biochem., 72, 248–254.

    Article  CAS  PubMed  Google Scholar 

  17. Laemmli, U. K. (1970) Nature, 227, 680–685.

    Article  CAS  PubMed  Google Scholar 

  18. Christophe, C., Martin, J., Gilbert, D., and Christophe, G. (2002) Bioinformatics, 18, 213–214.

    Article  Google Scholar 

  19. Macauley, M. S., Whitworth, G. E., Debowski, A. W., Chin, D., and Vocadlo, D. J. (2005) J. Biol. Chem., 280, 25313–25322.

    Article  CAS  PubMed  Google Scholar 

  20. Kim, E. J., Kang, D. O., Love, D. C., and Hanover, J. A. (2006) Carbohydr. Res., 341, 971–982.

    Article  CAS  PubMed  Google Scholar 

  21. Cuetinbasu, N., Macauley, M. S., Stubbs, K. A., Drapala, R., and Vocadlo, D. J. (2006) Biochemistry, 45, 3835–3844.

    Article  Google Scholar 

  22. Dennis, R. J., Taylor, E. J., Macauley, M. S., Stubbs, K. A., Turkenburg, J. P., Hart, S. J., Black, G. N., Vocadlo, D. J., and Davies, G. J. (2006) Nat. Chem. Biol., 13365–13371.

  23. Yin, J., Li, L., Shaw, N., Li, Y., Song, J. K., Zhang, W., Xia, C. F., Zhang, R. G., Joachimiak, A., Zhang, H. C., Wang, L. X., Liu, Z. J., and Wang, P. (2009) PLoS ONE, 4, e4658.

    Article  PubMed  Google Scholar 

  24. Zachara, N. E., and Hart, G. W. (2004) Biochim. Biophys. Acta, 1673, 13–28.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jing Li or Peng Wang.

Additional information

An erratum to this article can be found at http://dx.doi.org/10.1134/S0006297910100160

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, J., Huang, Cl., Zhang, Lw. et al. Isoforms of human O-GlcNAcase show distinct catalytic efficiencies. Biochemistry Moscow 75, 938–943 (2010). https://doi.org/10.1134/S0006297910070175

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297910070175

Key words

Navigation