Skip to main content
Log in

Proteomic analysis of salicylate-induced proteins of pea (Pisum sativum L.) leaves

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

The effect of 50 μM salicylic acid on soluble proteins of pea (Pisum sativum L.) leaves was studied by proteomic analysis. Thirty-two salicylate-induced proteins were found, and 13 of these were identified using MALDI TOF MS. Salicylate-induced increased content was shown for the first time for the family 18 glycoside hydrolase, α-amylase, 33 kDa protein of photosystem II, lipid-desaturase-like protein, and glutamine amidotransferase. Increased content of protective proteins of direct antipathogenic action such as chitinase and β-1,3-glucanases was also noted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

Bio-Lyte (pH 3-10):

ampholytes

Chaps:

3-[(3-cholamidopropyl)-dimethylammonio]-1-propanesulfonate (nonionic detergent)

2-D electrophoresis:

two-dimensional electrophoresis

IEF:

isoelectric focusing

NPR1:

protein that does not cause expression of the pathogen-induced protein PR1 (non-expressor of PR1)

SA:

salicylic acid

TCA:

trichloroacetic acid

References

  1. Raskin, I. (1992) Annu. Rev. Plant Physiol. Plant Mol. Biol., 43, 439–463.

    Article  CAS  Google Scholar 

  2. Klessig, D. F., Durner, J., Noad, R., Navarre, D. A., Wendehenne, D., Kumar, D., Zhou, J. M., Shah, J., Zhang, S., Kachroo, P., Trifa, Y., Pontier, D., Lam, E., and Silva, H. (2000) Proc. Natl. Acad. Sci. USA, 97, 8849–8855.

    Article  CAS  PubMed  Google Scholar 

  3. Durrant, W. E., and Dong, X. (2004) Annu. Rev. Phytopathol., 42, 185–209.

    Article  CAS  PubMed  Google Scholar 

  4. Vasyukova, N. I., and Ozeretskovskaya, O. L. (2007) Appl. Biochem. Microbiol., 43, 405–411.

    Article  Google Scholar 

  5. Metraux, J. P., Signer, H., Ryals, J., Ward, E., Wyss-Benz, M., Gandin, J., Raschdore, K., Schmid, E., Blum, W., and Inverardi, B. (1993) Science, 250, 1004–1006.

    Article  Google Scholar 

  6. Tarchevsky, I. A. (2002) Signal Systems of Plant Cells [in Russian], Nauka, Moscow.

    Google Scholar 

  7. Kim, S. T., Kim, S. G., Hwang, D. H., Kang, S. Y., Kim, H. J., Lee, B. H., Lee, J. J., and Kang, K. Y. (2004) Proteomics, 4, 3569–3578.

    Article  CAS  PubMed  Google Scholar 

  8. Nozu, Y., Tsugita, A., and Kamijo, K. (2006) Proteomics, 6, 3665–3670.

    Article  CAS  PubMed  Google Scholar 

  9. Mooney, B. P., Miernyk, J. A., Greenlief, C. M., and Thelen, J. J. (2006) Physiol. Plant., 128, 237–250.

    Article  CAS  Google Scholar 

  10. Liang, Y., Srivastava, S., Rahman, M. H., Strelkov, S. E., and Kav, N. N. (2008) J. Agric. Food Chem., 56, 1963–1976.

    Article  CAS  PubMed  Google Scholar 

  11. Yakovleva, V. G., Tarchevsky, I. A., and Egorova, A. M. (2007) Doklady Biokhim. Biofiz., 415, 228–231.

    Article  CAS  Google Scholar 

  12. Tarchevsky, I. A., Yakovleva, V. G., and Egorova, A. M. (2008) Doklady Biokhim. Biofiz., 422, 274–278.

    Article  CAS  Google Scholar 

  13. Jung, J. L., Fritig, B., and Hahne, G. (1993) Plant Physiol., 101, 873–880.

    CAS  PubMed  Google Scholar 

  14. Lowry, Y., Rosebrough, N., Farr, A., and Randall, R. (1951) J. Biol. Chem., 193, 265–275.

    CAS  PubMed  Google Scholar 

  15. Ellis, R. J. (1979) Trends Biochem. Sci., 4, 241–244.

    Article  CAS  Google Scholar 

  16. Schitz, S., Gallardo, K., Huart, M., Negroni, L., Sommerer, N., and Burstin, J. (2004) Plant Physiol., 135, 2241–2260.

    Article  Google Scholar 

  17. Durand, A., Hughes, R., Roussel, A., Flatman, R., Henrissat, B., and Juge, N. (2005) FEBS J., 272, 1745–1755.

    Article  CAS  PubMed  Google Scholar 

  18. Brunner, F., Stintzi, A., Fritig, B., and Legrand, M. (1998) Plant J., 14, 225–234.

    Article  CAS  PubMed  Google Scholar 

  19. Buchter, R., Stromberg, A., Schmelzer, E., and Kombrink, E. (1997) Plant Mol. Biol., 35, 749–761.

    Article  CAS  PubMed  Google Scholar 

  20. Minic, Z. (2008) Planta, 227, 723–740.

    Article  CAS  PubMed  Google Scholar 

  21. Watson, B. S., Asirvatham, V. S., Wang, L., and Sumner, L. W. (2003) Plant Physiol., 131, 1104–1123.

    Article  PubMed  Google Scholar 

  22. Grechkin, A. N. (1998) Prog. Lipid Res., 37, 317–352.

    Article  CAS  PubMed  Google Scholar 

  23. Grechkin, A. N., and Tarchevsky, I. A. (1999) Fiziol. Rast., 46, 132–142.

    Google Scholar 

  24. Nishiuchi, T., Hamada, T., Komada, H., and Iba, K. (1997) Plant Cell, 9, 1701–1712.

    Article  CAS  PubMed  Google Scholar 

  25. Lequeu, J., Fauconnier, M. L., Chammai, A., Bronner, R., and Blee, E. (2003) Plant J., 36, 155–164.

    Article  CAS  PubMed  Google Scholar 

  26. Wyman, A. J., and Yocum, C. F. (2005) Photosynth. Res., 85, 359–372.

    Article  CAS  PubMed  Google Scholar 

  27. Curto, M., Camafeita, E., Lopez, J. A., Maldonado, A. M., Rubiales, D., and Jorrin, J. V. (2006) Proteomics, 6, 163–174.

    Article  Google Scholar 

  28. Zhang, S., and Klessig, D. F. (1998) Proc. Natl. Acad. Sci. USA, 95, 7225–7230.

    Article  CAS  PubMed  Google Scholar 

  29. Mikolajczyk, M., Awotunde, O. S., Muszynska, G., Klessig, D. F., and Dobrowolska, G. (2000) Plant Cell, 12, 165–178.

    Article  CAS  PubMed  Google Scholar 

  30. Feussner, I., Fritz, I. G., and Wasternack, C. (1997) J. Info Botan. Acta, 110, 101–110.

    CAS  Google Scholar 

  31. Chen, Z., Silva, H., and Klessig, D. F. (1993) Science, 262, 1883–1886.

    Article  CAS  PubMed  Google Scholar 

  32. Van Camp, W., van Montagu, M., and Inzt, D. (1998) Trends Plant Sci., 3, 330–334.

    Article  Google Scholar 

  33. Zottini, M., Costa, A., Michele, R. D., Ruzszene, M., Carimi, F., and Schiavo, F. (2007) J. Exp. Bot., 58, 1397–1405.

    Article  CAS  PubMed  Google Scholar 

  34. Cao, H., Bowling, S. A., Gordon, S., and Dong, X. (1994) Plant Cell, 6, 1583–1592.

    Article  CAS  PubMed  Google Scholar 

  35. Cao, H., Li, X., and Dong, X. (1998) Proc. Natl. Acad. Sci. USA, 95, 6531–6536.

    Article  CAS  PubMed  Google Scholar 

  36. Shah, J. (2003) Curr. Opin. Plant Biol., 6, 365–371.

    Article  CAS  PubMed  Google Scholar 

  37. Koornneef, A., Leon-Reyes, A., Ritsema, T., Verhage, A., Den Otter, F. C., van Loon, L. C., and Pieterse, M. J. (2008) Plant Physiol., 147, 1358–1368.

    Article  CAS  PubMed  Google Scholar 

  38. Ndamukong, I., Abdallat, A. A., Thurov, C., Fode, B., Zander, M., Weigel, R., and Gatz, C. (2007) Plant J., 50, 128–139.

    Article  CAS  PubMed  Google Scholar 

  39. Baier, M., and Dietz, K. J. (2005) J. Exp. Bot., 56, 1449–1462.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. A. Tarchevsky.

Additional information

Original Russian Text © I. A. Tarchevsky, V. G. Yakovleva, A. M. Egorova, 2010, published in Biokhimiya, 2010, Vol. 75, No. 5, pp. 689–697.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tarchevsky, I.A., Yakovleva, V.G. & Egorova, A.M. Proteomic analysis of salicylate-induced proteins of pea (Pisum sativum L.) leaves. Biochemistry Moscow 75, 590–597 (2010). https://doi.org/10.1134/S0006297910050081

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297910050081

Key words

Navigation