Skip to main content
Log in

Structural stability and functional analysis of L-asparaginase from Pyrococcus furiosus

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

We report studies on an L-asparaginase from Pyrococcus furiosus, cloned and expressed in Escherichia coli and purified to homogeneity. Protein stability and enzyme kinetic parameters were determined. The enzyme was found to be thermostable, natively dimeric, and glutaminase-free, with optimum activity at pH 9.0. It showed a K m of 12 mM and a substrate inhibition profile above 20 mM L-asparagine. Urea could not induce unfolding and enzyme inactivation; however, with guanidine hydrochloride (GdnCl) a two-state unfolding pattern was observed. Reduced activity and an altered near-UV-CD signal for protein at low GdnCl concentration (1 M) suggested tertiary structural changes at the enzyme active site. A homology three-dimensional model was developed and the structural information was combined with activity and stability data to give functional clues about the asparaginase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AMC:

7-amino-4-methylcoumarin

EcAII, ErA, PfA, PhA, TaqA, and TthA:

asparaginases from Escherichia coli, Erwinia chrysanthemi, Pyrococcus furiosus, P. horikoshii, Thermus aquaticus, and T. thermophilus

GdnCl:

guanidine hydrochloride

References

  1. Mashburn, L. T., and Wriston, J. C., Jr. (1964) Arch. Biochem. Biophys., 105, 450–452.

    Article  CAS  PubMed  Google Scholar 

  2. Verma, N., Kumar, K., Kaur, G., and Anand, S. (2007) Artif. Cells Blood Substit. Immobil. Biotechnol., 35, 449–456.

    Article  CAS  PubMed  Google Scholar 

  3. Yun, M. K., Nourse, A., White, S. W., Rock, C. O., and Heath, R. J. (2007) J. Mol. Biol., 369, 794–811.

    Article  CAS  PubMed  Google Scholar 

  4. Sanches, M., Krauchenco, K., and Polikarpov, I. (2007) Curr. Chem. Biol., 1, 75–86.

    Article  CAS  Google Scholar 

  5. Ollenschlager, G., Roth, E., Linkesch, W., Jansen, S., Simmel, A., and Modder, B. (1988) Eur. J. Clin. Invest., 18, 512–516.

    Article  CAS  PubMed  Google Scholar 

  6. Ashworth, L. A., and MacLennan, A. P. (1974) Cancer Res., 34, 1353–1359.

    CAS  PubMed  Google Scholar 

  7. Stecher, A. L., de Deus, P. M., Polikarpov, I., and Abrahao-Neto, J. (1999) Pharm. Acta Helv., 74, 1–9.

    Article  CAS  PubMed  Google Scholar 

  8. Li, L. Z., Xie, T. H., Li, H. J., Qing, C., Zhang, G. M., and Sun, M. S. (2007) Enzyme Microb. Technol., 41, 523–527.

    Article  CAS  Google Scholar 

  9. Lubkowski, J., Palm, G. J., Gilliland, G. L., Derst, C., Rohm, K. H., and Wlodawer, A. (1996) Eur. J. Biochem., 241, 201–207.

    Article  CAS  PubMed  Google Scholar 

  10. Wriston, J. C., Jr., and Yellin, T. O. (1973) Adv. Enzymol. Relat. Areas Mol. Biol., 39, 185–248.

    Article  CAS  PubMed  Google Scholar 

  11. Amrein, T. M., Schonbachler, B., Escher, F., and Amado, R. (2004) J. Agric. Food Chem., 52, 4282–4288.

    Article  CAS  PubMed  Google Scholar 

  12. Rosen, J., and Hellenas, K. E. (2002) Analyst, 127, 880–882.

    Article  CAS  PubMed  Google Scholar 

  13. Mottram, D. S., Wedzicha, B. L., and Dodson, A. T. (2002) Nature, 419, 448–449.

    Article  CAS  PubMed  Google Scholar 

  14. Pedreschi, F., Kaack, K., and Granby, K. (2008) Food Chem., 109, 386–392.

    Article  CAS  Google Scholar 

  15. Ciesarova, Z., Kiss, E., and Boegl, P. (2006) J. Food Nutr. Res., 42, 141–146.

    Google Scholar 

  16. Kuilman, M., and Wilms, L. (2007) Toxicol. Lett., 172, S196–S197.

    Article  Google Scholar 

  17. Morales, F., Capuano, E., and Fogliano, V. (2008) Ann. N. Y. Acad. Sci., 1126, 89–100.

    Article  CAS  PubMed  Google Scholar 

  18. Ehrman, M., Cedar, H., and Schwartz, J. H. (1971) J. Biol. Chem., 246, 88–94.

    CAS  PubMed  Google Scholar 

  19. Dunlop, P. C., Meyer, G. M., Ban, D., and Roon, R. J. (1978) J. Biol. Chem., 253, 1297–1304.

    CAS  PubMed  Google Scholar 

  20. Kotzia, G. A., and Labrou, N. E. (2005) J. Biotechnol., 119, 309–323.

    Article  CAS  PubMed  Google Scholar 

  21. Kotzia, G. A., and Labrou, N. E. (2007) J. Biotechnol., 127, 657–669.

    Article  CAS  PubMed  Google Scholar 

  22. Tollersrud, O. K., and Aronson, N. N., Jr. (1989) Biochem. J., 260, 101–108.

    CAS  PubMed  Google Scholar 

  23. Neerunjun, E. D., and Gregoriadis, G. (1976) Biochem. Soc. Trans., 4, 133–134.

    CAS  PubMed  Google Scholar 

  24. Chang, T. M. S. (1984) Appl. Biochem. Biotechnol., 10, 5–24.

    Article  CAS  PubMed  Google Scholar 

  25. Wileman, T. E., Foster, R. L., and Elliott, P. N. (1986) J. Pharm. Pharmacol., 38, 264–271.

    CAS  PubMed  Google Scholar 

  26. Poznansky, M. J., Shandling, M., Salkie, M. A., Elliott, J., and Lau, E. (1982) Cancer Res., 42, 1020–1025.

    CAS  PubMed  Google Scholar 

  27. Kamisaki, Y., Wada, H., Yagura, T., Nishimura, H., Matsushima, A., and Inada, Y. (1982) Gann, 73, 470–474.

    CAS  PubMed  Google Scholar 

  28. Derst, C., Henseling, J., and Rohm, K. H. (2000) Protein Sci., 9, 2009–2017.

    Article  CAS  PubMed  Google Scholar 

  29. Kotzia, G. A., and Labrou, N. E. (2009) FEBS J., 276, 1750–1761.

    Article  CAS  PubMed  Google Scholar 

  30. Curran, M. P., Daniel, R. M., Guy, G. R., and Morgan, H. W. (1985) Arch. Biochem. Biophys., 241, 571–576.

    Article  CAS  PubMed  Google Scholar 

  31. Pritsa, A. A., and Kyriakidis, D. A. (2001) Mol. Cell. Biochem., 216, 93–101.

    Article  CAS  PubMed  Google Scholar 

  32. Triantafillou, D. J., Georgatsos, J. G., and Kyriakidis, D. A. (1988) Mol. Cell. Biochem., 81, 43–51.

    Article  CAS  PubMed  Google Scholar 

  33. Yao, M., Yasutake, Y., Morita, H., and Tanaka, I. (2005) Acta Crystallogr. Sec. D Biol. Crystallogr., 61, 294–301.

    Article  Google Scholar 

  34. Bradford, M. M. (1976) Anal. Biochem., 72, 248–254.

    Article  CAS  PubMed  Google Scholar 

  35. Wriston, J. C., Jr. (1985) Meth. Enzymol., 113, 608–618.

    Article  CAS  PubMed  Google Scholar 

  36. Ylikangas, P., and Mononen, I. (2000) Anal. Biochem., 280, 42–45.

    Article  CAS  PubMed  Google Scholar 

  37. Mononen, I., Mononen, T., Ylikangas, P., Kaartinen, V., and Savolainen, K. (1994) Clin. Chem., 40, 385–388.

    CAS  PubMed  Google Scholar 

  38. Haki, G. D., and Rakshit, S. K. (2003) Bioresour. Technol., 89, 17–34.

    Article  CAS  PubMed  Google Scholar 

  39. Ludlow, J. M., and Clark, D. S. (1991) Crit. Rev. Biotechnol., 10, 321–345.

    Article  CAS  PubMed  Google Scholar 

  40. Cappelletti, D., Chiarelli, L. R., Pasquetto, M. V., Stivala, S., Valentini, G., and Scotti, C. (2008) Biochem. Biophys. Res. Commun., 377, 1222–1226.

    Article  CAS  PubMed  Google Scholar 

  41. Aung, H. P., Bocola, M., Schleper, S., and Rohm, K. H. (2000) Biochim. Biophys. Acta, 1481, 349–359.

    CAS  PubMed  Google Scholar 

  42. Derst, C., Wehner, A., Specht, V., and Rohm, K. H. (1994) Eur. J. Biochem., 224, 533–540.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Kundu.

Additional information

Published in Russian in Biokhimiya, 2010, Vol. 75, No. 3, pp. 457–464.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bansal, S., Gnaneswari, D., Mishra, P. et al. Structural stability and functional analysis of L-asparaginase from Pyrococcus furiosus . Biochemistry Moscow 75, 375–381 (2010). https://doi.org/10.1134/S0006297910030144

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297910030144

Key words

Navigation