Skip to main content
Log in

Membrane bound pyrophosphatase and P-Type adenosine triphosphatase of Leishmania donovani as possible chemotherapeutic targets: Similarities and differences in inhibitor sensitivities

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

The activities of inorganic pyrophosphatase (PPase) and adenosine triphosphatase (ATPase) were studied in the plasma membrane of Leishmania donovani promastigotes and amastigotes. It was shown that the specific activity of PPase was greater than that of ATPase in the promastigote plasma membrane. We characterized H+-PPase present in the plasma membrane of L. donovani and investigated its possible role in the survival of promastigote and amastigote. PPase activity was stimulated by K+ and sodium orthovanadate and inhibited by pyrophosphate analogs (imidodiphosphate and alendronate), KF, N,N′-dicyclohexylcarbodiimide (DCCD), thiol reagents (p-chloromercuribenzenesulfonate (PCMBS), N-ethylmaleimide (NEM), and phenylarsine oxide (PAO)), the ABC superfamily transport modulator verapamil, and also by the F1Fo-ATPase inhibitor quercetin. ATPase activity was stimulated by K+ and verapamil, inhibited by DCCD, PCMBS, NEM, sodium azide, sodium orthovanadate, and quercetin, and was unaffected by PAO. We conclude that there are significant differences within promastigote, amastigote, and mammalian host in cytosolic pH homeostasis to merit the inclusion of PPase transporter as a putative target for rational drug design.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ATPase:

adenosine triphosphatase

DCCD:

N,N′-dicyclohexylcarbodiimide

IDP:

imidodiphosphate

NEM:

N-ethylmaleimide

PAO:

phenylarsine oxide

PCMBS:

p-chloromercuribenzenesulfonate

PPase:

pyrophosphatase

PPi :

pyrophosphate

References

  1. Perez-Victoria, J. M., di Pietro, A., Barron, D., Ravelo, A. G., Castanys, S., and Gamarro, F. (2002) Curr. Drug Target., 3, 311–333.

    Article  CAS  Google Scholar 

  2. Pearson, R. D., and Wilson, M. E. (1989) in Parasite Infections in the Compromised Host (Welzeh, P. D., and Genta, R. M., eds.) Marcel Dekker, Inc., New York, pp. 31–81.

    Google Scholar 

  3. Rea, P. A., and Poole, R. J. (1993) Annu. Rev. Plant Physiol. Plant Mol. Biol., 44, 157–180.

    CAS  Google Scholar 

  4. Baltscheffsky, M., and Baltscheffsky, H. (1995) Photosynth. Res., 46, 87–91.

    Article  CAS  Google Scholar 

  5. Baltscheffsky, M. (1969) Arch. Biochem. Biophys., 133, 46–53.

    Article  CAS  PubMed  Google Scholar 

  6. Baltcheffsky, M. (1969) Arch. Biochem. Biophys., 130, 646–652.

    Article  Google Scholar 

  7. Keister, D. L., and Minton, N. J. (1971) Biochem. Biophys. Res. Commun., 42, 932–939.

    Article  CAS  PubMed  Google Scholar 

  8. Baltcheffsky, M., Nadanacera, S., and Schulter, A. (1998) Biochim. Biophys. Acta, 1364, 301–306.

    Article  Google Scholar 

  9. Prerez-Castineira, J. R., Alvar, J., Ruiz-Perez, L. M., and Serrano, A. (2002) Biochem. Biophys. Res. Commun., 294, 567–573.

    Article  Google Scholar 

  10. Mansurova, S. E. (1989) Biochim. Biophys. Acta, 977, 237–247.

    Article  CAS  PubMed  Google Scholar 

  11. Desgeux, P. (2001) Trans. R. Soc. Trop. Med. Hyg., 95, 239–243.

    Article  Google Scholar 

  12. Mukhopadhyay, S., Sen, P., Bhattacharya, S., Majumdar, S., and Roy, S. (1999) Vaccine, 17, 291–300.

    Article  CAS  PubMed  Google Scholar 

  13. Bera, T. (1987) Mol. Biochem. Parasitol., 23, 183–192.

    Article  CAS  PubMed  Google Scholar 

  14. Berredo-Pinho, M., Perus-Sampaio, C. E., Chrispim, P. P., Belmont-Firpo, R., Lemo, A. P., Martiny, A., Vannier-Santos, M. A., and Meyer-Fernandes, J. R. (2001) Arch. Biochem. Biophys., 391, 16–24.

    Article  CAS  PubMed  Google Scholar 

  15. Debrabant, A., Joshi, M. B., Pimenta, P. F., and Dwyer, D. M. (2004) Int. J. Parasitol., 34, 205–217.

    Article  PubMed  Google Scholar 

  16. Sereno, D., and Lemesre, J. L. (1997) Antimicrob. Agents Chemother., 41, 972–976.

    CAS  PubMed  Google Scholar 

  17. Kar, K., Mukherji, K., Naskar, K., Bhattacharya, A., and Ghosh, D. K. (1990) J. Protozool., 37, 277–290.

    CAS  PubMed  Google Scholar 

  18. Katewa, S. D., and Katyare, S. S. (2003) Anal. Biochem., 323, 180–187.

    Article  CAS  PubMed  Google Scholar 

  19. Biswas, S., Haque, R., Bhuyan, N. R., and Bera, T. (2008) Biochim. Biophys. Acta, 1780, 116–127.

    CAS  PubMed  Google Scholar 

  20. Gornall, A. G., Bardawill, C. J., and David, M. M. (1949) J. Biol. Chem., 177, 751–766.

    CAS  PubMed  Google Scholar 

  21. Markwell, M. K., Hass, S. M., Bieber, L. L., and Tolbert, N. E. (1978) Anal. Biochem., 87, 206–210.

    Article  CAS  PubMed  Google Scholar 

  22. Zilberstin, D., and Dwyer, D. M. (1988) Biochem. J., 256, 13–21.

    Google Scholar 

  23. Stiles, J. K., Kucerova, Z., Sarfo, B., Meade, C. A., Thompson, W., Shah, P., and Xue, L. (2003) Ann. Trop. Med. Parasitol., 97, 351–366.

    Article  CAS  PubMed  Google Scholar 

  24. Jiang, S., Anderson, S. A., Winget, G. D., and Mukkada, A. J. (1994) J. Cell. Physiol., 15, 60–66.

    Article  Google Scholar 

  25. Rodan, G. A. (1998) Annu. Rev. Pharmacol. Toxicol., 38, 375–388.

    Article  CAS  PubMed  Google Scholar 

  26. Stocken, L. A., and Thompson, R. H. S. (1946) Biochem. J., 40, 529–535.

    CAS  PubMed  Google Scholar 

  27. VanderHeyden, N., Benaim, G., and Docampo, R. (1996) Biochem. J., 318, 103–109.

    CAS  PubMed  Google Scholar 

  28. Linnett, P. E., and Beechey, R. B. (1979) Meth. Enzymol., 55, 472–518.

    Article  CAS  PubMed  Google Scholar 

  29. Ivey, D. M., and Ljungdahl, L. G. (1986) J. Bacteriol., 165, 252–257.

    CAS  PubMed  Google Scholar 

  30. Sanchez, A., Castanys, S., and Gamarro, F. (1994) Biochem. Biophys. Res. Commun., 919, 855–861.

    Article  Google Scholar 

  31. Orlowski, S., Mir, L. M., Belehradek, J., and Garrigos, M. (1996) Biochem. J., 317, 515–522.

    CAS  PubMed  Google Scholar 

  32. Glaser, T. A., Baatz, J. E., Kreishman, G. P., and Mukkada, A. J. (1988) Proc. Natl. Acad. Sci. USA, 85, 7602–7606.

    Article  CAS  PubMed  Google Scholar 

  33. Rivas, L., and Chang, K. P. (1983) Biol. Bull., 165, 536–537.

    Google Scholar 

  34. Belogurov, G. A., Malinen, A. M., Turkina, M. V., Jalonen, U., Rytkonen, K., Baykov, A. A., and Lathi, R. (2005) Biochemistry, 44, 2088–2096.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Bera.

Additional information

Published in Russian in Biokhimiya, 2009, Vol. 74, No. 12, pp. 1695–1702.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sen, S.S., Bhuyan, N.R., Lakshman, K. et al. Membrane bound pyrophosphatase and P-Type adenosine triphosphatase of Leishmania donovani as possible chemotherapeutic targets: Similarities and differences in inhibitor sensitivities. Biochemistry Moscow 74, 1382–1387 (2009). https://doi.org/10.1134/S000629790912013X

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S000629790912013X

Key words

Navigation