Skip to main content
Log in

Microbial origin of phenylcarboxylic acids in the human body

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

In previous studies we demonstrated increased amounts of phenylcarboxylic acids (PCA) in serum of patients with sepsis. This observation prompted the present study of the ability of the human microbiome bacteria to produce PCA in vitro. PCA were detected in culture media by gas chromatography-mass spectrometry. Increased amounts of phenyllactic and p-hydroxyphenyllactic acids were produced by Klebsiella pneumonia, Escherichia coli, and Staphylococcus aureus. Certain strict anaerobes (bifidobacteria, lactobacteria, eubacteria) have also been found to actively produce these PCA, but these bacteria are not etiologically linked to sepsis. Thus our results demonstrate the ability of sepsis-related bacteria to produce PCA and provide experimental support for the theory that the accumulation of PCA in the blood of patients with sepsis results from microbial degradation of phenylalanine and tyrosine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

GC-MS:

gas chromatography-mass spectrometry

HMDB:

Human Metabolome Database

HPAA:

p-hydroxyphenylacetic acid

HPLA:

p-hydroxyphenyllactic acid

HPPA:

p-hydroxyphenylpropionic acid

PAA:

phenylacetic acid

PCA:

phenylcarboxylic acid

PLA:

phenyllactic acid

PPA:

phenylpropionic acid

TMS:

trimethylsilyl

References

  1. Backhed, F., Ley, R. E., Sonnenburg, J. L., Peterson, D. A., and Gordon, J. I. (2005) Science, 307, 1915–1920.

    Article  PubMed  CAS  Google Scholar 

  2. Beloborodova, N. V., and Osipov, G. A. (1999) Vest. RAMN, 7, 25–31.

    Google Scholar 

  3. Wikoff, W. R., Anfora, A. T., Liu, J., Schultz, P. G., Lesley, S. A., Peters, E. C., and Suizdak, G. (2009) Proc. Natl. Acad. Sci. USA, 106, 3698–3703.

    Article  CAS  PubMed  Google Scholar 

  4. Beloborodova, N. V., Arkhipova, A. S., Beloborodov, D. M., Boyko, N. B., Melko, A. I., and Olenin, A. Yu. (2006) Klin. Lab. Diagn., No. 2, 3–6.

  5. Khodakova, A., and Beloborodova, N. (2007) Crit. Care, 11(Suppl. 4), 5.

    Article  Google Scholar 

  6. Fedotseva, N. I., Kazakov, R. E., Kondrashova, M. N., and Beloborodova, N. V. (2008) Toxicol. Lett., 180, 182–188.

    Article  CAS  Google Scholar 

  7. Levchuk, A. A., Palmina, N. P., and Raushenbakh, M. O. (1987) Byul. Eksp. Biol. Med., 104, 77–79.

    CAS  Google Scholar 

  8. Liu, J., Li, J., and Sidell, N. (2007) Cancer Chemother. Pharmacol., 59, 217–225.

    Article  CAS  PubMed  Google Scholar 

  9. Bourgeau, G., and Mayrand, D. (1983) Can. J. Microbiol., 29, 1184–1189.

    CAS  PubMed  Google Scholar 

  10. Mayrand, D. (1979) Can. J. Microbiol., 25, 927–928.

    Article  CAS  PubMed  Google Scholar 

  11. Moss, C. W., Lambert, M. A., and Goldsmith, D. J. (1970) Appl. Microbiol., 19, 375–378.

    CAS  PubMed  Google Scholar 

  12. Smith, E. A., and Macfarlane, G. T. (1996) J. Appl. Bacteriol., 81, 288–302.

    CAS  PubMed  Google Scholar 

  13. Deutsch, J. C. (1997) J. Chromatogr. B Biomed. Sci. Appl., 690, 1–6.

    Article  CAS  PubMed  Google Scholar 

  14. Curtius, H.-Ch., Vollmin, J. A., and Baerlocher, K. (1973) Anal. Chem., 45, 1107–1110.

    Article  CAS  Google Scholar 

  15. Arias-Barrau, E., Olivera, E. R., Luengo, J. M., Fernandez, C., Galan, B., Garcia, J. L., Diaz, E., and Minambres, B. (2004) J. Bacteriol., 186, 5062–5077.

    Article  CAS  PubMed  Google Scholar 

  16. Sparnins, V. L., and Chapman, P. J. (1976) J. Bacteriol., 127, 362–366.

    CAS  PubMed  Google Scholar 

  17. Lambert, M. A., and Moss, C. W. (1980) J. Clin. Microbiol., 12, 291–293.

    CAS  PubMed  Google Scholar 

  18. Mao, L. F., Chu, C., and Schulz, H. (1994) Biochemistry, 33, 3320–3326.

    Article  CAS  PubMed  Google Scholar 

  19. Clemens, P. C., Schunemann, M. H., Hoffman, G. F., and Kohlschutter, A. (1990) J. Inher. Metab. Dis., 13, 227–228.

    Article  CAS  PubMed  Google Scholar 

  20. Nakamura, K., Tanaka, Y., Mitsubuchi, H., and Endo, F. (2007) J. Nutr., 137, 1556S–1560S.

    CAS  PubMed  Google Scholar 

  21. Kopple, J. D. (2007) J. Nutr., 137, 1586S–1590S.

    CAS  PubMed  Google Scholar 

  22. Leibich, H. M., and Pickert, A. (1985) J. Chromatogr., 338, 25–32.

    Article  Google Scholar 

  23. Haan, E., Brown, G., Bankier, A., Mitchell, D., Hunt, S., and Barnes, G. (1985) Eur. J. Nutr., 144, 63–65.

    CAS  Google Scholar 

  24. Shenderov, B. A. (1998) Medical Microbial Etiology and Functional Nutrition [in Russian], Vols. 1–3, Grant, Moscow.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. V. Beloborodov.

Additional information

Original Russian Text © N. V. Beloborodova, A. S. Khodakova, I. T. Bairamov, A. Yu. Olenin, 2009, published in Biokhimiya, 2009, Vol. 74, No. 12, pp. 1657–1663.

Originally published in Biochemistry (Moscow) On-Line Papers in Press, as Manuscript BM09-129, July 5, 2009.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beloborodov, N.V., Khodakova, A.S., Bairamov, I.T. et al. Microbial origin of phenylcarboxylic acids in the human body. Biochemistry Moscow 74, 1350–1355 (2009). https://doi.org/10.1134/S0006297909120086

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297909120086

Key words

Navigation