Skip to main content
Log in

Effect of entomocidal proteins from Bacillus thuringiensis on ion permeability of apical membranes of Tenebrio molitor larvae gut epithelium

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Effects of entomocidal Cry-type proteins, δ-endotoxins Cry3A and Cry11A produced by Bacillus thuringiensis, on ion permeability of the apical membranes of intestinal epithelium from Tenebrio molitor larvae midgut were studied. Using potential-sensitive dyes safranine O and oxonol VI and δpH indicator acridine orange, it was shown that placing brush border membrane vesicles (BBMV) (loaded with Mg2+ during their preparation) into a salt-free buffer medium resulted in spontaneous generation of transmembrane electric potential on the vesicular membrane (negative inside the vesicles) accompanied by acidification of the aqueous phase inside the vesicles. The generation of transmembrane ion gradients on the vesicular membrane was a result of an electrogenic efflux of Mg2+ from the vesicles as shown by abolishing of the membrane potential by such agents as MgSO4 or CaCl2 in centimolar concentrations, a highly lipophilic cation tetraphenylphosphonium, and some blockers of cell membrane Ca2+-channels in submillimolar concentrations. A passive generation of membrane potential on the vesicular membrane (but positive inside the vesicles) was also observed upon addition of centimolar concentrations of K2SO4. Addition of δ-endotoxins Cry3A and Cry11A to the vesicle suspension in a salt-free buffer medium or in the same medium supplemented with centimolar concentrations of K2SO4 exerted a pronounced hyperpolarization of the vesicular membrane. This hyperpolarization was sensitive to the same agents, which abolished the membrane potential generation in the absence of δ-endotoxin. It is concluded that Cry proteins induced in BBMV from T. molitor opening pores or ion channels, which were considerably more permeable for alkaline- and alkaline-earth metal cations than for the accompanying anions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

BBMV:

brush border membrane vesicles

TPP+ :

tetraphenylphosphonium

References

  1. Schnepf, E., Crickmore, N., van Rie, J., Lereclus, D., Baum, J., Feitelson, J., Zeigler, D. R., and Dean, D. H. (1998) Microbiol. Mol. Biol. Rev., 62, 775–806.

    CAS  PubMed  Google Scholar 

  2. Crickmore, N., Zeigler, D. R., Feitelson, J., Schnepf, E., van Rie, J., Lereclus, D., Baum, J., and Dean, D. H. (1998) Microbiol. Mol. Biol. Rev., 62, 807–813.

    CAS  PubMed  Google Scholar 

  3. Chestukhina, G. G., Kostina, L. I., Mikhailova, A. L., Tyurin, S. A., Klepikova, F. S., and Stepanov, V. M. (1982) Arch. Microbiol., 132, 159–162.

    Article  CAS  Google Scholar 

  4. Bravo, A., Gill, S. S., and Soberon, M. (2007) Toxicon, 49, 423–435.

    Article  CAS  PubMed  Google Scholar 

  5. Schwartz, J. L., Garneau, L., Savaria, D., Masson, L., Brousseau, R., and Rousseau, E. (1993) J. Membr. Biol., 132, 53–62.

    CAS  PubMed  Google Scholar 

  6. Uemura, T., Ihara, H., Wadano, A., and Himeno, M. (1992) Biosci. Biotech. Biochem., 56, 1976–1979.

    Article  CAS  Google Scholar 

  7. Peyronnet, O., Noulin, J.-F., Laprade, R., and Schwartz, J.-L. (2004) J. Insect. Physiol., 50, 791–803.

    Article  CAS  PubMed  Google Scholar 

  8. Azuma, M., Harvey, W. R., and Wieczorek, H. (1995) FEBS Lett., 361, 153–156.

    Article  CAS  PubMed  Google Scholar 

  9. Wieczorek, H., Gruber, G., Harvey, W. R., Huss, M., Merzendorfer, H., and Zeiske, W. (2000) J. Exp. Biol., 203, 127–135.

    CAS  PubMed  Google Scholar 

  10. Dow, J. A. T. (1984) Am. J. Physiol., 246, R633–R635.

    CAS  PubMed  Google Scholar 

  11. Rausell, C., Garcia-Robles, I., Sanchez, J., Munoz-Garay, C., Martinez-Ramirez, A. C., Real, M. D., and Bravo, A. (2004) Biochim. Biophys. Acta, 1660, 99–105.

    Article  CAS  PubMed  Google Scholar 

  12. Ochoa-Campuzano, C., Real, M. D., Martinez-Ramirez, A. C., Bravo, A., and Rausell, C. (2007) Biochem. Biophys. Res. Commun., 70, 101–109.

    Google Scholar 

  13. Carroll, J., Li, J., and Ellar, D. J. (1989) Biochem. J., 261, 99–105.

    CAS  PubMed  Google Scholar 

  14. Chestukhina, G. G., Kostina, L. I., Zalunin, I. A., Kotova, T. S., Katrukha, S. P., Kuznetsov, Yu. S., and Stepanov, V. M. (1977) Biokhimiya, 42, 1660–1667.

    CAS  Google Scholar 

  15. Dronina, M. A., Revina, L. P., Kostina, L. I., Ganushkina, L. A., Zalunin, I. A., and Chestukhina, G. G. (2006) Biochemistry (Moscow), 71, 133–139.

    Article  CAS  Google Scholar 

  16. Wolfersberger, M. G., Luethy, P., Maurer, A., Parenti, P., Sacchi, F. V., Giordana, B., and Hanozet, M. (1987) Comp. Biochem. Physiol., 86A, 301–308.

    Article  CAS  Google Scholar 

  17. Bradford, M. M. (1976) Analyt. Biochem., 72, 248–254.

    Article  CAS  PubMed  Google Scholar 

  18. Akerman, K. E. O., and Wikstrom, K. F. (1976) FEBS Lett., 68, 191–197.

    Article  CAS  PubMed  Google Scholar 

  19. Appel, H.-J., and Bersch, B. (1987) Biochim. Biophys. Acta, 903, 480–494.

    Article  Google Scholar 

  20. Palmgren, M. G. (1991) Analyt. Biochem., 192, 316–321.

    Article  CAS  PubMed  Google Scholar 

  21. Blankemeyer, J. T. (1978) Biophys. J., 23, 313–318.

    Article  CAS  PubMed  Google Scholar 

  22. Zeiske, W., Meyer, H., and Wieczorek, H. (2002) J. Exp. Biol., 205, 463–474.

    CAS  PubMed  Google Scholar 

  23. Peyronnet, O., Vachon, V., Schwartz, J. L., and Laprade, R. (2000) J. Exp. Biol., 203, 1835–1844.

    CAS  PubMed  Google Scholar 

  24. Lorence, A., Darszon, A., Diaz, C., Lievano, A., Quintera, R., and Bravo, A. (1995) FEBS Lett., 360, 217–222.

    Article  CAS  PubMed  Google Scholar 

  25. Lorence, A., Darszon, A., and Bravo, A. (1997) FEBS Lett., 414, 303–307.

    Article  CAS  PubMed  Google Scholar 

  26. Chao, A. C., Koch, A. R., and Moffett, D. F. (1989) Am. J. Physiol., 257, 752–761.

    Google Scholar 

  27. Vinokurov, K. S., Elpidina, E. N., Oppert, B., Prabhakar, S., Zhuzhikov, D. P., Dunaevsky, Y. E., and Belozersky, M. A. (2006) Comp. Biochem. Physiol. Biochem. Mol. Biol., 145, 126–137.

    Article  CAS  Google Scholar 

  28. Sciotrino, C. M., Shrode, L. D., Fletcher, B. R., Harte, P. J., and Romero, M. F. (2001) Am. J. Physiol. Cell Physiol., 281, C499–463.

    Google Scholar 

  29. Onken, H., Moffett, S. B., and Moffett, D. F. (2004) J. Exp. Biol., 207, 1779–1787.

    Article  CAS  PubMed  Google Scholar 

  30. Tsien, R. W. (1990) Rev. Cell. Biol., 6, 715–760.

    Article  CAS  Google Scholar 

  31. Bravo, A., Miranda, R., Gomez, I., and Soberon, M. (2002) Biochim. Biophys. Acta Biomembr., 1562, 63–69.

    Article  CAS  Google Scholar 

  32. Monette, R., Potvin, L., Baines, D., Laprade, R., and Schwartz, J. L. (1997) Appl. Environ. Microbiol., 63, 440–447.

    CAS  PubMed  Google Scholar 

  33. Potvin, L., Laprade, R., and Schwartz, R. (1998) J. Exp. Biol., 201, 1851–1858.

    CAS  PubMed  Google Scholar 

  34. Revina, L. P., Kostina, L. I., Ganushkina, L. A., Mikhailova, A. L., Zalunin, I. A., and Chestikhina, G. G. (2004) Biochemistry (Moscow), 69, 181–187.

    Article  CAS  Google Scholar 

  35. Tran, L. B., Vachon, V., Jean-Louis Schwartz, J.-L., and Laprade, R. (2001) Appl. Environ. Microbiol., 67, 4488–4494.

    Article  CAS  PubMed  Google Scholar 

  36. Fortier, M., Vachon, V., Kirouac, M., Schwartz, J. L., and Laprade, R. (2005) J. Membr. Biol., 208, 77–87.

    Article  CAS  PubMed  Google Scholar 

  37. Vachon, V., Paradis, M.-J., Marsolais, M., Schwartz, J.-L., and Laprade, R. (1995) J. Membr. Biol., 148, 57–63.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. M. Andreev.

Additional information

Original Russian Text © I. M. Andreev, N. V. Bulushova, I. A. Zalunin, G. G. Chestukhina, 2009, published in Biokhimiya, 2009, Vol. 74, No. 10, pp. 1346–1355.

Originally published in Biochemistry (Moscow) On-Line Papers in Press, as Manuscript BM09-094, September 13, 2009.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Andreev, I.M., Bulushova, N.V., Zalunin, I.A. et al. Effect of entomocidal proteins from Bacillus thuringiensis on ion permeability of apical membranes of Tenebrio molitor larvae gut epithelium. Biochemistry Moscow 74, 1096–1103 (2009). https://doi.org/10.1134/S0006297909100058

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297909100058

Key words

Navigation