Skip to main content
Log in

Compact acid-induced state of Clitoria ternatea agglutinin retains its biological activity

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

The effects of pH on Clitoria ternatea agglutinin (CTA) were studied by spectroscopy, size-exclusion chromatography, and by measuring carbohydrate specificity. At pH 2.6, CTA lacks well-defined tertiary structure, as seen by fluorescence and near-UV CD spectra. Far-UV CD spectra show retention of 50% native-like secondary structure. The mean residue ellipticity at 217 nm plotted against pH showed a transition around pH 4.0 with loss of secondary structure leading to the formation of an acid-unfolded state. This state is relatively less denatured than the state induced by 6 M guanidine hydrochloride. With a further decrease in pH, this unfolded state regains ∼75% secondary structure at pH 1.2, leading to the formation of the A-state with native-like near-UV CD spectral features. Enhanced 8-anilino-1-naphthalene-sulfonate binding was observed in A-state, indicating a “molten-globule” like conformation with exposed hydrophobic residues. Acrylamide quenching data exhibit reduced accessibility of quencher to tryptophan, suggesting a compact conformation at low pH. Size-exclusion chromatography shows the presence of a compact intermediate with hydrodynamic size corresponding to a monomer. Thermal denaturation of the native state was cooperative single-step transition and of the A-state was non-cooperative two-step transition. A-State regains 72% of the carbohydrate-binding activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ANS:

8-anilino-1-naphthalene-sulfonic acid

A-state:

acid induced state

CTA:

Clitoria ternatea agglutinin

GdnHCl:

guanidine hydrochloride

MRE:

mean residue ellipticity

SEC:

size-exclusion chromatography

UA:

acid unfolded state

References

  1. Kuwajima, K. (1989) Proteins, 6, 87–103.

    Article  CAS  PubMed  Google Scholar 

  2. Ptitsyn, O. B. (1995) Trends Biochem. Sci., 20, 376–379.

    Article  CAS  PubMed  Google Scholar 

  3. Goto, Y., and Fink, A. L. (1989) Biochemistry, 28, 945–952.

    Article  CAS  PubMed  Google Scholar 

  4. Dryden, D., and Weir, M. P. (1991) Biochim. Biophys. Acta, 1078, 94–100.

    CAS  PubMed  Google Scholar 

  5. Song, J., Bai, P., Luo, L., and Peng, Z. Y. (2001) Protein Sci., 10, 53–62.

    Google Scholar 

  6. Colon, W., and Roder, H. (1996) Nat. Struct. Biol., 3, 1019–1025.

    Article  CAS  PubMed  Google Scholar 

  7. Barrick, D., Hughson, F. M., and Baldwin, R. L. (1994) J. Mol. Biol., 237, 588–601.

    Article  CAS  PubMed  Google Scholar 

  8. Jaenicke, R. (1991) Biochemistry, 30, 3147–3161.

    Article  CAS  PubMed  Google Scholar 

  9. Naeem, A., Khan, A., and Khan, R. H. (2005) Biochem. Biophys. Res. Commun., 331, 1284–1294.

    Article  CAS  PubMed  Google Scholar 

  10. Ballery, N., Desmadril, M., Minard, P., and Yon, J. M. (1993) Biochemistry, 32, 708–714.

    Article  CAS  PubMed  Google Scholar 

  11. Matousschek, A., Serrano, L., Meiering, E. M., Bycroft, M., and Ferscht, A. R. (1992) J. Mol. Biol., 224, 837–845.

    Article  Google Scholar 

  12. Naeem, A., Khan, K. A., and Khan, R. H. (2004) Arch. Biochem. Biophys., 432, 79–87.

    CAS  PubMed  Google Scholar 

  13. Goto, Y., and Nishikiori, S. (1991) J. Mol. Biol., 222, 679–686.

    Article  CAS  PubMed  Google Scholar 

  14. Goto, Y., Calciano, L. J., and Fink, A. L. (1990) Proc. Natl. Acad. Sci. USA, 87, 573–577.

    Article  CAS  PubMed  Google Scholar 

  15. Kumar, D. P., Tiwari, A., and Bhatt, R. (2004) J. Biol. Chem., 279, 32093–32099.

    Article  CAS  PubMed  Google Scholar 

  16. Naeem, A., Haque, S., and Khan, R. H. (2007) Protein J., 26, 403–413.

    Article  CAS  PubMed  Google Scholar 

  17. Naeem, A., Ahmad, E., and Khan, R. H. (2007) Int. J. Biol. Macromol., 41, 481–486.

    Article  CAS  PubMed  Google Scholar 

  18. Davis, B. J. (1964) Ann. N. Y. Acad. Sci., 121, 404–407.

    Article  CAS  PubMed  Google Scholar 

  19. Lowry, D. H., Rosebrough, N. J., Farr, A. L., and Randal, R. J. (1951) J. Biol. Chem., 193, 265–275.

    CAS  PubMed  Google Scholar 

  20. Stryer, L. (1965) J. Mol. Biol., 13, 482–495.

    Article  CAS  PubMed  Google Scholar 

  21. Stryer, L. (1968) Science, 162, 526–540.

    Article  CAS  PubMed  Google Scholar 

  22. Semisotnov, G. V., Rodionova, N. A., Razgulyaev, O. I., Uversky, V. N., Gripas, A. F., and Gilmanshin, R. I. (1991) Biopolymers, 31, 119–128.

    Article  CAS  PubMed  Google Scholar 

  23. Matulis, D., and Lovrien, R. (1998) Biophys. J., 74, 422–429.

    Article  CAS  PubMed  Google Scholar 

  24. Matulis, D., Baumann, C. G., Bloomfield, U. A., and Lovrien, R. E. (1999) Biopolymers, 49, 451–458.

    Article  CAS  PubMed  Google Scholar 

  25. Muzammil, S., Kumar, Y., and Tayyab, S. (1999) Eur. J. Biochem., 266, 26–32.

    Article  CAS  PubMed  Google Scholar 

  26. Pawar, S. A., and Deshpande, V. V. (2000) Eur. J. Biochem., 267, 6331–6338.

    Article  CAS  PubMed  Google Scholar 

  27. Holzman, T. E., Dougherty, J. J., Brems, D. N., and Mackenzie, N. E. (1990) Biochemistry, 29, 1255–1261.

    Article  CAS  PubMed  Google Scholar 

  28. Nandi, P. K. (1998) Int. J. Biol. Macromol., 22, 23–31.

    Article  CAS  PubMed  Google Scholar 

  29. Lala, A. K., and Kaul, P. (1992) J. Biol. Chem., 267, 19914–19918.

    CAS  PubMed  Google Scholar 

  30. Fink, A. L., Calciano, C. T., Goto, Y., Kurotsu, T., and Palleros, D. R. (1994) Biochemistry, 33, 12504–125011.

    Article  CAS  PubMed  Google Scholar 

  31. Wu, L. C., and Kim, P. S. (1998) J. Mol. Biol., 280, 175–182.

    Article  CAS  PubMed  Google Scholar 

  32. Goto, Y., Takahashi, N., and Fink, A. L. (1990) Biochemistry, 29, 3480–3488.

    Article  CAS  PubMed  Google Scholar 

  33. Hamada, D., Kuroda, Y., Kataoka, M., Aimoto, S., Yoshimura, T., and Goto, Y. (1996) J. Mol. Biol., 256, 172–186.

    Article  CAS  PubMed  Google Scholar 

  34. Kataoka, M., Hagihara, Y., Mihara, K., and Goto, Y. (1993) J. Mol. Biol., 229, 591–596.

    Article  CAS  PubMed  Google Scholar 

  35. Raschke, T. M., and Marqusee, S. (1997) Nat. Struct. Biol., 4, 298–304.

    Article  CAS  PubMed  Google Scholar 

  36. Kay, M. S., and Baldwin, R. L. (1996) Nat. Struct. Biol., 3, 439–445.

    Article  CAS  PubMed  Google Scholar 

  37. Khorasanizadeh, S., Peters, I. D., and Roder, H. (1996) Nat. Struct. Biol., 3, 193–205.

    Article  CAS  PubMed  Google Scholar 

  38. Mitra, N., Srinivas, V. R., Ramya, T. N., Ahmad, N., Reddy, G. B., and Surolia, A. (2002) Biochemistry, 41, 9256–9263.

    Article  CAS  PubMed  Google Scholar 

  39. Reddy, G. B., Srinivas, V. R., Ahmad, N., and Surolia, A. (1999) J. Biol. Chem., 274, 4500–4504.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. H. Khan.

Additional information

Published in Russian in Biokhimiya, 2009, Vol. 74, No. 10, pp. 1336–1345.

Originally published in Biochemistry (Moscow) On-Line Papers in Press, as Manuscript BM09-002, July 5, 2009.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Naeem, A., Saleemuddin, M. & Khan, R.H. Compact acid-induced state of Clitoria ternatea agglutinin retains its biological activity. Biochemistry Moscow 74, 1088–1095 (2009). https://doi.org/10.1134/S0006297909100046

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297909100046

Key words

Navigation