Biochemistry (Moscow)

, Volume 74, Issue 9, pp 962–970 | Cite as

Multifactorial nature of high frequency of mitochondrial DNA mutations in somatic mammalian cells

  • I. N. TodorovEmail author
  • G. I. Todorov


The high frequency of mitochondrial DNA (mtDNA) mutations in somatic mammalian cells, which is more than two orders of magnitude higher than the mutation frequency of nuclear DNA (nDNA), significantly correlates with development of a variety of mitochondrial diseases (neurodegenerative diseases, cardiomyopathies, type II diabetes mellitus, cancer, etc.). A direct cause—consequence relationship has been established between mtDNA mutations and aging phenotypes in mammals. However, the unclear nature of the high frequency of mtDNA mutations requires a comprehensive consideration of factors that contribute to this phenomenon: oxidative stress, features of structural organization and repair of the mitochondrial genome, ribonucleotide reductase activity, replication errors, mutations of nuclear genes encoding mitochondrial proteins.

Key words

oxidative stress frequency of mtDNA mutations structural features repair mechanisms ribonucleotide reductase activity 



adenine nucleotide translocase




apurine/apyrimidine endonuclease


base excision repair

dNDP and dNTP

deoxyribonucleotide-5′-diphosphate and -triphosphate, respectively


electron transport chain


glutathione peroxidase


human 8-oxo-dGTPase


lipid peroxidation


manganese superoxide dismutase


DNA glycosylase


endonuclease III homolog




polymerase chain reaction




reactive oxygen species


ribonucleotide reductase


mitochondrial transcription factor A


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Wei, Y. H., and Lee, H. C. (2003) Adv. Clin. Chem., 37, 83–128.PubMedCrossRefGoogle Scholar
  2. 2.
    Kang, D., and Hamasaki, N. (2005) Clin. Biochem., 38, 685–695.PubMedCrossRefGoogle Scholar
  3. 3.
    Ohta, S. (2006) Oncogene, 25, 4768–4776.PubMedCrossRefGoogle Scholar
  4. 4.
    Pulkes, T., and Hanna, M. G. (2001) Adv. Drug Deliv. Rev., 49, 27–43.PubMedCrossRefGoogle Scholar
  5. 5.
    Kamiya, J., and Aoki, Y. (2003) Diabetologia, 46, 1559–1566.PubMedCrossRefGoogle Scholar
  6. 6.
    Coskun, P. E., Beal, M. F., and Wallace, D. C. (2004) Proc. Natl. Acad. Sci. USA, 101, 10726–10731.PubMedCrossRefGoogle Scholar
  7. 7.
    Modica-Napolitano, J. S., Kulawiec, M., and Singh, K. K. (2007) Curr. Mol. Med., 7, 121–131.PubMedCrossRefGoogle Scholar
  8. 8.
    Chomyn, A., and Attardi, G. (2003) Biochem. Biophys. Res. Commun., 304, 519–529.PubMedCrossRefGoogle Scholar
  9. 9.
    Gaziev, A. I., and Shaikhaev, G. O. (2008) Genetika, 44, 437–455.PubMedGoogle Scholar
  10. 10.
    Todorov, I. N. (2007) Ros. Khim. Zh., 51, 93–106.Google Scholar
  11. 11.
    Trifunovic, A., Wredenberg, A., Falkenberg, M., Spelbrink, J. N., Rovio, A. T., Bruder, C. E., Bohlooly, Y. M., Gidlof, S., Oldfors, A., Wibom, R., Tornell, J., Jacobs, H. T., and Larsson, N. G. (2004) Nature, 429, 417–423.PubMedCrossRefGoogle Scholar
  12. 12.
    Todorov, I. N. (2006) Tekhnol. Zhivykh Sistem, 3, 19–50.Google Scholar
  13. 13.
    Beckman, K. B., and Ames, B. N. (1998) Physiol. Rev., 78, 547–581.PubMedGoogle Scholar
  14. 14.
    Skulachev, V. P. (1998) Biochemistry (Moscow), 63, 1335–1343.Google Scholar
  15. 15.
    Zenkov, N. K., Lankin, V. Z., and Men’shchikova, E. B. (2001) Oxidative Stress [in Russian], Nauka/Interperiodika, Moscow.Google Scholar
  16. 16.
    James, A. M., and Murphy, M. P. (2002) J. Biomed. Sci., 9, 475–487.PubMedCrossRefGoogle Scholar
  17. 17.
    Wei, Y. H., Lee, C. F., Lee, H. C., Ma, Y. S., Wang, C. W., Lu, C. Y., and Pang, C. Y. (2001) Ann. N. Y. Acad. Sci., 928, 97–112.PubMedCrossRefGoogle Scholar
  18. 18.
    Todorov, I. N., and Todorov, G. I. (2003) Stress, Aging, and Their Biochemical Correction [in Russian], Nauka, Moscow.Google Scholar
  19. 19.
    Bandy, B., and Davison, A. J. (1990) Free Rad. Biol. Med., 8, 523–539.PubMedCrossRefGoogle Scholar
  20. 20.
    Hoffmann, S., Spitkovsky, D., Radicella, J. P., Bernd, E., and Wiesner, R. J. (2004) Free Rad. Biol. Med., 36, 765–773.PubMedCrossRefGoogle Scholar
  21. 21.
    Krakauer, D. S., and Mira, A. (1999) Nature, 400, 125–126.PubMedCrossRefGoogle Scholar
  22. 22.
    Tanaka, M., Takeyasu, T., Fuku, N., Li-Jun, G., and Kurata, M. (2004) Ann. N. Y. Acad. Sci., 1011, 7–20.PubMedCrossRefGoogle Scholar
  23. 23.
    Larsen, N. B., Rasmussen, M., and Rasmussen, L. J. (2005) Mitochondrion, 5, 89–108.PubMedCrossRefGoogle Scholar
  24. 24.
    Shadel, G. S., and Clayton, D. A. (1997) Annu. Rev. Biochem., 66, 409–435.PubMedCrossRefGoogle Scholar
  25. 25.
    Chatterjee, A., Mambo, E., and Sidransky, D. (2006) Oncogene, 25, 4663–4674.PubMedCrossRefGoogle Scholar
  26. 26.
    Sharma, H., Singh, A., Sharma, C., Jain, S. K., and Singh, N. (2005) Cancer Cell Int., 5, 28–34.CrossRefGoogle Scholar
  27. 27.
    Galkin, A. P., and Todorov, I. N. (1969) Radiobiologiya, 9, 21–25.Google Scholar
  28. 28.
    Hou, J. H., and Wei, Y. H. (1998) Mutat. Res., 403, 75–84.PubMedGoogle Scholar
  29. 29.
    Marcelino, L. A., and Thilly, W. G. (1999) Mutat. Res., 434, 177–203.PubMedGoogle Scholar
  30. 30.
    Krokan, H. E., Standal, R., and Slupphaug, G. (1997) Biochem. J., 32, 1–15.Google Scholar
  31. 31.
    Richter, C., Park, J. W., and Ames, B. N. (1988) Proc. Natl. Acad. Sci. USA, 85, 6465–6467.PubMedCrossRefGoogle Scholar
  32. 32.
    Miyakawa, I., Sando, N., Kawano, S., Nakamura, S., and Kurolwa, T. (1987) J. Cell Sci., 88, 431–439.PubMedGoogle Scholar
  33. 33.
    Ekstrand, M. I., Falkenberg, M., Rantanen, A., Park, C. B., Gaspari, M., Hultenby, K., Rustin, P., and Gustafsson, C. M. (2004) Hum. Mol. Genet., 13, 935–944.PubMedCrossRefGoogle Scholar
  34. 34.
    Kanki, T., Ohgaki, K., Gaspari, M., Gustafsson, C. M., Fukuoh, A., and Sasaki, N. (2004) Mol. Cell. Biol., 24, 9823–9834.PubMedCrossRefGoogle Scholar
  35. 35.
    Fisher, R. P., and Clayton, D. A. (1988) Mol. Cell. Biol., 8, 3496–3509.PubMedGoogle Scholar
  36. 36.
    Grosschedl, R., Giese, K., and Pagel, J. (1994) Trends Genet., 10, 94–100.PubMedCrossRefGoogle Scholar
  37. 37.
    Kang, D., and Hamasaki, N. (2005) Ann. N. Y. Acad. Sci., 1042, 101–108.PubMedCrossRefGoogle Scholar
  38. 38.
    Antipova, V. N., Malakhova, L. V., Ushakova, T. E., Sirota, N. P., Fomenko, L. A., Bezlepkin, V. G., and Gaziev, A. I. (2005) Radiats. Biol. Radioekol., 45, 389–396.Google Scholar
  39. 39.
    Clayton, D. A., Doda, J. N., and Friedberg, E. C. (1974) Proc. Natl. Acad. Sci. USA, 71, 2777–2781.PubMedCrossRefGoogle Scholar
  40. 40.
    Kleiner, O., Butenandt, J., Carell, T., and Batschauer, A. (1999) Eur. J. Biochem., 264, 161–167.PubMedCrossRefGoogle Scholar
  41. 41.
    Costa, R. M. A., Chiganc, A. V., Galhardo, R. S., Carvalho, H., and Menck, C. F. M. (2003) Biochimie, 85, 1083–1099.PubMedCrossRefGoogle Scholar
  42. 42.
    Seeborg, E., Eide, L., and Bjora’s, M. (1995) Trends Biochem. Sci., 20, 391–397.CrossRefGoogle Scholar
  43. 43.
    Li, G. M. (2003) Front. Biosci., 8, 997–1017.CrossRefGoogle Scholar
  44. 44.
    Kunkel, T. A., Pavlov, Y. L., and Bebenek, K. (2003) DNA Repair, 2, 135–149.PubMedCrossRefGoogle Scholar
  45. 45.
    Sekiguchi, M. (1996) Genes Cells, 1, 139–145.PubMedCrossRefGoogle Scholar
  46. 46.
    Kang, D., Nishida, J., Iyama, A., Nakabeppu, Y., Furuichi, M., Fujiwara, T., Sekiguchi, M., and Takeshige, K. (1995) J. Biol. Chem., 270, 14659–14665.PubMedCrossRefGoogle Scholar
  47. 47.
    Nishioka, K., Ohtsubo, T., Oda, H., Fujiwara, T., Kang, D., Sugimachi, K., and Nakabeppu, Y. (1999) Mol. Biol. Cell, 10, 1637–1652.PubMedGoogle Scholar
  48. 48.
    Ohtsubo, T., Nishioka, K., Imaiso, Y., Iwai, S., Shimokava, H., Oda, H., Fujiwara, T., and Nakabeppu, Y. (2000) Nucleic Acids Res., 28, 1355–1364.PubMedCrossRefGoogle Scholar
  49. 49.
    Nakabeppu, Y. (2001) Prog. Nucleic Acid Res. Mol. Biol., 68, 75–92.PubMedCrossRefGoogle Scholar
  50. 50.
    Grishko, V. I., Rachek, L. I., Spitz, D. R., Wilson, G. L., and LeDoux, S. P. (2005) J. Biol. Chem., 280, 8901–8905.PubMedCrossRefGoogle Scholar
  51. 51.
    Pinz, K. G., and Bogenhagen, D. F. (1998) Mol. Cell. Biol., 18, 1257–1265.PubMedGoogle Scholar
  52. 52.
    Lim, S. E., Longley, M. J., and Copeland, W. C. (1999) J. Biol. Chem., 274, 38197–38203.PubMedCrossRefGoogle Scholar
  53. 53.
    Stuart, J. A., Bourque, B. M., de Souza-Pinto, N. C., and Bohr, V. A. (2004) FASEB, 18, 595–597.Google Scholar
  54. 54.
    LeDoux, S. P., Wilsson, G. L., Beecham, E. J., Stevnsner, T., Wassermann, K., and Bohr, V. A. (1992) Carcinogenesis, 13, 1967–1973.PubMedCrossRefGoogle Scholar
  55. 55.
    Mason, P. A., and Lightowlers, R. N. (2003) Fed. Eur. Biochem. Soc. Lett., 554, 6–9.CrossRefGoogle Scholar
  56. 56.
    Coffey, G., Lakshmipathy, U., and Campbell, C. (1999) Nucleic Acids Res., 27, 3348–3354.PubMedCrossRefGoogle Scholar
  57. 57.
    Stuart, J. A., de Souza-Pinto, N. C., and Bohr, V. A. (2004) Nucleic Acids Res., 32, 2181–2192.PubMedCrossRefGoogle Scholar
  58. 58.
    Mandavilli, B. S., Santos, J. H., and van Houten, B. (2002) Mutat. Res., 509, 127–151.PubMedGoogle Scholar
  59. 59.
    Yoshimura, D., Sakumi, K., Ohno, M., and Sakai, Y. (2003) J. Biol. Chem., 278, 37965–37973.PubMedCrossRefGoogle Scholar
  60. 60.
    Druzhyna, N. M., Hollensworth, S. B., Kelley, M. R., Wilson, G. L., and LeDoux, S. P. (2003) Glia, 42, 370–378.PubMedCrossRefGoogle Scholar
  61. 61.
    Harrison, J. F., Hollensworth, S. B., Spitz, D. R., Copeland, W. C., Wilson, G. L., and LeDoux, S. P. (2005) Nucleic Acids Res., 33, 4660–4671.PubMedCrossRefGoogle Scholar
  62. 62.
    Stuart, J. A., Bourque, B. M., de Souza-Pinto, N. C., and Bohr, V. A. (2005) Free Rad. Biol. Med., 38, 737–745.PubMedCrossRefGoogle Scholar
  63. 63.
    Yakes, F. M., and van Houten, B. (1997) Proc. Natl. Acad. Sci. USA, 94, 514–519.PubMedCrossRefGoogle Scholar
  64. 64.
    Thelander, L., and Reichard, P. (1979) Ann. Rev. Biochem., 48, 133–158.PubMedCrossRefGoogle Scholar
  65. 65.
    Das, S. K., and Loeb, L. A. (1984) Mutat. Res., 131, 97–100.PubMedGoogle Scholar
  66. 66.
    Pulatova, M. K., Sharygin, V. L., Rikhireva, G. T., Mitrokhin, Yu. I., and Todorov, I. N. (2006) Izv. Ros. Akad. Nauk. Ser. Biol., No. 5, 546–563.Google Scholar
  67. 67.
    Cory, J. G., and Carter, G. L. (1986) Adv. Enzyme Regul., 24, 385–401.CrossRefGoogle Scholar
  68. 68.
    Pulatova, M. K., Sharygin, V. L., and Todorov, I. N. (1999) Biochem. Biophys. Acta. Mol. Basis Disease, 1453, 321–329.Google Scholar
  69. 69.
    Danilova, N. I., Silaeva, S. A., and Debov, S. S. (1977) Biokhimiya, 42, 1973–1977.Google Scholar
  70. 70.
    Silaeva, S. A., Kashernova, B. Ya., Danilova, N. I., and Debov, S. S. (1980) Vopr. Med. Khim., 26, 255–259.PubMedGoogle Scholar
  71. 71.
    Tanaka, H., Arakawa, H., Yamaguchi, T., Shiraishi, K., Nakao, S., and Miyata, M. (2000) Nature, 404, 42–49.PubMedCrossRefGoogle Scholar
  72. 72.
    Nakano, K., Balint, E., Ashcroft, M., and Vousden, K. H. (2000) Oncogene, 19, 4283–4289.PubMedCrossRefGoogle Scholar
  73. 73.
    Kimura, T., Takeda, S., Sagiya, Y., Gotoh, M., Nakamura, Y., and Arakawa, H. (2003) Nat. Genet., 34, 440–445.PubMedCrossRefGoogle Scholar
  74. 74.
    Bourdon, A., Minai, L., Serre, V., Jais, J. P., Sarzi, E., Chrétien, S. A. D., de Lonlay, P., Paquis-Flucklinger, V., Arakawa, H., Nakamura, Y., Munnich, A., and Rotig, A. (2007) Nat. Genet., 39, 776–780.PubMedCrossRefGoogle Scholar
  75. 75.
    Hakarisson, P., Hofer, A., and Thelander, L. (2006) J. Biol. Chem., 281, 7834–7841.CrossRefGoogle Scholar
  76. 76.
    Thelander, L. (2007) Nat. Genet., 39, 704.CrossRefGoogle Scholar
  77. 77.
    Mathews, C. K. (2006) FASEB J., 20, 1300–1314.PubMedCrossRefGoogle Scholar
  78. 78.
    MITOMAP (2001) A Human Mitochondrial Genome Database, Center for Molecular Medicine, Emory University Atlanta, GA, [ html].Google Scholar
  79. 79.
    Shoubridge, E. A. (2001) Hum. Mol. Genet., 10, 2277–2284.PubMedCrossRefGoogle Scholar
  80. 80.
    Suomalainen, A., and Kaukonen, J. (2001) Am. J. Med. Genet., 106, 53–61.PubMedCrossRefGoogle Scholar
  81. 81.
    Troucs, I., Neill, S., and Wallase, D. C. (1994) Proc. Natl. Acad. Sci. USA, 91, 8334–8338.CrossRefGoogle Scholar
  82. 82.
    Bourgeron, T., Rustin, P., Chretien, D., Birch-Machin, M., Bourgeois, M., Viegas-Pequignot, E., Munnich, A., and Rotig, A. (1995) Nat. Genet., 11, 144–149.PubMedCrossRefGoogle Scholar
  83. 83.
    Van den Heuvel, L., Ruitenbeek, W., Smeets, R., Gelman-Kohan, Z., Elpeleg, O., Loeffen, J., Trijbels, F., Mariman, E., de Bruijn, D., and Smeitink, J. (1998) Am. J. Hum. Genet., 62, 262–268.PubMedCrossRefGoogle Scholar
  84. 84.
    Van den Heuvel, L., and Smeitink, J. (2001) Bioessays, 23, 518–525.PubMedCrossRefGoogle Scholar
  85. 85.
    Kaukonen, J., Juselius, J. K., Tiranti, V., Kyttala, A., Zeviani, M., Comi, G. P., Keranen, S., Peltonen, L., and Suomalainen, A. (2000) Science, 289, 782–785.PubMedCrossRefGoogle Scholar
  86. 86.
    Melov, S., Coskun, P., Patel, M., Tuinstra, R., Cottrell, B., Jun, A. S., Zastawny, T. H., Dizdaroglu, M., Goodman, S. I., Huang, T. T., Miziorko, H., Epstein, C. J., and Wallace, D. C. (1999) Proc. Natl. Acad. Sci. USA, 96, 846–851.PubMedCrossRefGoogle Scholar
  87. 87.
    Yasukawa, T., Suzuki, T., Ishii, N., Ohta, S., and Watanabe, K. (2001) EMBO J., 20, 4794–4802.PubMedCrossRefGoogle Scholar
  88. 88.
    Nishino, I., Spinazzola, A., and Hirano, M. (1999) Science, 283, 689–692.PubMedCrossRefGoogle Scholar
  89. 89.
    Saada, A., Shaag, A., Mandel, H., Nevo, Y., Eriksson, S., and Elpeleg, O. (2001) Nat. Genet., 29, 342–344.PubMedCrossRefGoogle Scholar
  90. 90.
    Li, Y., Huang, T. T., Carlson, E. J., Melov, S., Ursell, P. C., Olson, J. L., Noble, L. J., Yoshimura, M. P., Berger, C., and Chan, P. H. (1995) Nat. Genet., 11, 376–381.PubMedCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2009

Authors and Affiliations

  1. 1.Institute of Problems of Chemical PhysicsRussian Academy of SciencesChernogolovka, Moscow RegionRussia

Personalised recommendations