Skip to main content
Log in

Properties of autonomous 3′→5′ exonucleases

  • Mini-Review
  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Autonomous 3′→5′ exonucleases (AE) are not bound covalently to DNA polymerases, but they are often included into the replicative complexes. Intracellular AE overproduction in bacteria results in sharp suppression of mutagenesis, whereas inactivation of these enzymes in bacteria and fungi leads to an increase in mutagenesis frequency by 2–3 orders of magnitude. Correction of DNA polymerase errors in vitro occurs after addition of AE to the incubation medium. This correction is clearly manifested under conditions of mutational stress (during induced but not spontaneous mutagenesis), for instance, with an imbalance of dNTPs — error-prone conditions. At equimolar dNTP (error-free conditions), the correction is relatively weak. The gene knockout of both alleles of the major AE gene in mice does not influence spontaneous mutagenesis though a substantial increase could be expected. The frequency of induced mutagenesis has not been yet measured, though the inactivation of AE could increase the frequency of mutagenesis. Complete inactivation of the major AE leads to inflammatory myocarditis and a 5-fold reduction of life span of mice. Dominant heterozygous mutations were found in various loci of the AE gene, which caused the development of Aicardi-Goutieres (autosomal recessive encephalopathy) syndrome, familial chilblain lupus, systemic lupus erythematosus, retinal vasculopathy, and cerebral leukodystrophy. In the nucleus, AE have a corrective function, but after transition into cytoplasm these enzymes destroy aberrant DNA that appears during replication and thereby save the cells from autoimmune diseases. Depending on their intracellular localization, AE carry out various biological functions but employ the same mechanism of the catalyzed reactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AE:

autonomous 3′→5′ exonucleases

References

  1. Jonczyk, P., Fijalkowska, Y., and Ciesla, Z. (1988) Proc. Natl. Acad. Sci. USA, 85, 9124–9127.

    Article  PubMed  CAS  Google Scholar 

  2. Ciesla, Z., Jonczyk, P., and Fijalkowska, Y. (1990) Mol. Gen. Genet., 221, 251–255.

    Article  PubMed  CAS  Google Scholar 

  3. Fijalkowska, I. J., and Schaaper, R. M. (1995) Proc. Natl. Acad. Sci. USA, 93, 2856–2861.

    Article  Google Scholar 

  4. Viswanathan, M., and Lovett, S. T. (1998) Genetics, 149, 7–16.

    PubMed  CAS  Google Scholar 

  5. Thelen, M. P., Onel, K., and Holloman, W. K. (1994) J. Biol. Chem., 269, 747–754.

    PubMed  CAS  Google Scholar 

  6. Onel, K., Thelen, M. P., Ferguson, D. O., et al. (1995) Mol. Cell. Biol., 15, 5329–5338.

    PubMed  CAS  Google Scholar 

  7. McCormick, P. J., Danhauser, L. L., Rustum, Y. M., and Bertram, J. S. (1983) Biochim. Biophys. Acta, 756, 36–40.

    PubMed  CAS  Google Scholar 

  8. Kunkel, T. A. (1992) BioEssays, 14, 303–308.

    Article  PubMed  CAS  Google Scholar 

  9. Kunkel, T. A., Jamesand, E. A., and Loeb, L. A. (1983) in DNA Repair (Friedberg, E. S., and Hanawalt, P. C., eds.) Vol. 2, Marcel Dekker, Inc, New York-Basel, pp. 223–237.

    Google Scholar 

  10. Kunkel, T. A. (1985) J. Biol. Chem., 260, 5787–5796.

    PubMed  CAS  Google Scholar 

  11. Krutyakov, V. M., Belyakova, N. V., Kleiner, N. E., et al. (1983) Dokl. Akad. Nauk SSSR, 272, 1491–1494.

    CAS  Google Scholar 

  12. Akiyoshi, H. (1988) J. Biochem., 104, 521–525.

    PubMed  CAS  Google Scholar 

  13. Taguchi, T., Toda, T., and Fukuda, M. (1988) Mech. Ageing Dev., 100, 1–16.

    Article  Google Scholar 

  14. Belyakova, N. V., Kleiner, N. E., Kravetskaya, T. P., et al. (1993) Eur. J. Biochem., 217, 493–500.

    Article  PubMed  CAS  Google Scholar 

  15. Shevelev, I. V., Kravetskaya, T. P., Legina, O. K., and Krutyakov, V. M. (1996) Mutat. Res., 352, 51–55.

    PubMed  Google Scholar 

  16. Shevelev, I. V., Belyakova, N. V., Kravetskaya, T. P., and Krutyakov, V. M. (2000) Mutat. Res., 459, 237–242.

    PubMed  CAS  Google Scholar 

  17. Belyakova, N. V., Kravetskaya, T. P., Legina, O. K., et al. (2007) Izv. RAN. Biol. Ser., 5, 517–523.

    Google Scholar 

  18. Brown, K. R., Weatherdon, K. L., Galligan, C. L., and Skalski, V. (2002) DNA Repair, 1, 795–810.

    Article  PubMed  CAS  Google Scholar 

  19. Shevelev, I. V., Belyakova, N. V., Kravetskaya, T. P., and Krutyakov, V. M. (2002) Mol. Biol. (Moscow), 36, 1054–1061.

    Google Scholar 

  20. Krutyakov, V. M. (2004) Mol. Biol. (Moscow), 38, 823–833.

    Google Scholar 

  21. Mazur, D. R., and Perrino, F. W. (1999) J. Biol. Chem., 247, 19655–19660.

    Article  Google Scholar 

  22. De Silva, U., Choudhury, S., Baley, S. L., et al. (2007) J. Biol. Chem., 282, 10537–10543.

    Article  PubMed  Google Scholar 

  23. Morita, M., Stamp, G., Robins, P., et al. (2004) Mol. Cel. Biol., 24, 6719–6727.

    Article  CAS  Google Scholar 

  24. Yang, Y-G., Lindahl, T., and Barnes, D. E. (2007) Cell, 131, 873–886.

    Article  PubMed  CAS  Google Scholar 

  25. Rice, G., Newman, W. G., Dean, J., et al. (2007) Am. J. Hum. Genet., 80, 811–815.

    Article  PubMed  CAS  Google Scholar 

  26. Lehtinen, D. A., Harvey, S., Mulcfhy, M. J., et al. (2008) J. Biol. Chem., 283, 31649–31656.

    Article  PubMed  CAS  Google Scholar 

  27. Kavanagh, D., Spitzer, D., Kothari, P. H., et al. (2008) Cell Cycle, 15, 1718–1720.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. M. Krutyakov.

Additional information

Original Russian Text © V. M. Krutyakov, 2009, published in Biokhimiya, 2009, Vol. 74, No. 8, pp. 1011–1014.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krutyakov, V.M. Properties of autonomous 3′→5′ exonucleases. Biochemistry Moscow 74, 821–823 (2009). https://doi.org/10.1134/S000629790908001X

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S000629790908001X

Key words

Navigation