Skip to main content
Log in

Features of structural organization and expression regulation of malate dehydrogenase isoforms from Rhodobacter sphaeroides strain 2R

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Two isoforms of malate dehydrogenase (MDH), dimeric and tetrameric, have been found in the purple non-sulfur bacterium Rhodobacter sphaeroides strain 2R, devoid of the glyoxylate shunt, which assimilate acetate via the citramalate cycle. Inhibitory analysis showed that the 74-kDa protein is involved in tricarboxylic acid cycle, while the 148-kDa MDH takes part in the citramalate pathway. A single gene encoding synthesis of the isologous subunits of the MDH isoforms was found during molecular-biological investigations. The appearance in the studied bacterium of the tetrameric MDH isoform during growth in the presence of acetate is probably due to the increased level of mdh gene expression, revealed by the real-time PCR, the product of which in cooperation with the citramalate cycle enzymes plays an important role in acetate assimilation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

MDH:

malate dehydrogenase

TCA cycle:

tricarboxylic acid cycle

References

  1. Lehninger, A. L., Nelson, D. L., and Cox, M. M. (2004) in Principles of Biochemistry, 4th Edn., W. H. Freeman & Co., N. Y.

    Google Scholar 

  2. Eprintsev, A. T., Popov, V. N., and Shevchenko, M. Yu. (2007) Glyoxylate Cycle: Is It a Universal Adaptation Mechanism? [in Russian], Akademkniga, Moscow.

    Google Scholar 

  3. Filatova, L. V., Berg, I. A., Krasilnikova, E. N., Tsygankov, A. A., Laurinavichene, T. V., and Ivanovskii, R. N. (2005) Microbiology (Moscow), 74, 313–318.

    CAS  Google Scholar 

  4. Alber, B. E., Spanheimer, R., Ebenau-Jehle, C., and Fuchs, G. (2006) Mol. Microbiol., doi: 10.1111/j.1365-2958.2006.05238.x.

  5. Faleiro, A. C., Gazoli, R. A., Pires da Silva, M., and Machado, M. (2003) Acta Sci. Biol. Sci., 25, 207–211.

    CAS  Google Scholar 

  6. Kirby, R. R. (2000) Gene, 245, 81–88.

    Article  PubMed  CAS  Google Scholar 

  7. Eprintsev, A. T., Klimova, M. A., Falaleeva, M. I., and Kompantseva, E. I. (2008) Microbiology (Moscow), 77, 158–162.

    CAS  Google Scholar 

  8. Larimer, F. W., Chain, P., Hauser, L., Lamerdin, J., Malfatti, S., Do, L., Land, M. L., Pelletier, D. A., Beatty, J. T., Lang, A. S., Tabita, F. R., Gibson, J. L., Hanson, T. E., Bobst, C., Torres, J. L., Peres, C., Harrison, F. H., Gibson, J., and Harwood, C. S. (2004) Nat. Biotechnol., 22, 55–61.

    Article  PubMed  CAS  Google Scholar 

  9. Eprintsev, A. T., Falaleeva, M. I., Grabovich, M. Yu., Parfenova, N. V., Kashirskaya, N. N., and Dubinina, G. A. (2004) Microbiology (Moscow), 73, 437–442.

    CAS  Google Scholar 

  10. Choudhary, M., Zanhua, X., Fu, Y. X., and Kaplan, S. (2007) J. Bacteriol., 189, 1914–1921.

    Article  PubMed  CAS  Google Scholar 

  11. Mackenzie, C., Choudhary, M., Larimer, F. W., Predki, P. F., Stilwagen, S., Armitage, J. P., Barber, R. D., Donohue, T. J., Hosler, J. P., Newman, J. E., Shapleigh, J. P., Sockett, R. E., Zeilstra-Ryalls, J., and Kaplan, S. (2001) Photosynth. Res., 70, 19–41.

    Article  PubMed  CAS  Google Scholar 

  12. Pfenning, N. D., and Lippert, K. D. (1966) Arch. Microbiol., 55, 245–259.

    Google Scholar 

  13. Kitto, G. B., Everse, J., Murphey, W. H., and Kaplan, N. (1967) Biochemistry, 6, 15–19.

    Article  Google Scholar 

  14. Veeger, C., der Vartanian, D. V., and Zeylemaker, W. P. (1969) Meth. Enzymol., 13, 81–90.

    Article  CAS  Google Scholar 

  15. Rice, S. C., and Pon, N. G. (1975) J. Biochem., 77, 367–372.

    Google Scholar 

  16. Romanova, A. K. (1980) Biochemical Methods of Autotrophy in Microorganisms [in Russian], Nauka, Moscow.

    Google Scholar 

  17. Dixon, G. H., and Kornberg, H. L. (1959) J. Biochem., 72, 195–200.

    Google Scholar 

  18. Lowry, O. H., Rosebrough, H. J., Farr, A. L., and Randall, R. J. (1951) J. Biol. Chem., 193, 265–275.

    PubMed  CAS  Google Scholar 

  19. Osterman, L. A. (1985) Chromatography of Proteins and Nucleic Acids [in Russian], Nauka, Moscow, pp. 109–339.

    Google Scholar 

  20. Gaal, E., Megyessi, G., and Veretskey, L. (1982) Electrophoresis in Separation of Biological Macromolecules [Russian translation], Mir, Moscow, pp. 149–258.

    Google Scholar 

  21. Detereman, G. (1970) Gel Chromatography [Russian translation], Mir, Moscow, pp. 33–99.

    Google Scholar 

  22. Nesterenko, M. V., Tilley, M., and Upton, S. J. (1994) J. Biochem. Biol., 28, 239–242.

    CAS  Google Scholar 

  23. Laemmli, U. K. (1970) Nature, 77, 680–683.

    Article  Google Scholar 

  24. Jacob, C. A., Frey, P. A., Hainfeld, J. F., Wall, J. S., and Yang, H. (1985) Biochemistry, 24, 2425–2431.

    Article  Google Scholar 

  25. Spampinato, C. P., Casati, P., and Andreo, C. S. (1998) Biochim. Biophys. Acta, 1383, 245–252.

    PubMed  CAS  Google Scholar 

  26. Berg, I. A., Krasilnikova, E. N., and Ivanovskii, R. N. (2000) Microbiology (Moscow), 69, 13–18.

    CAS  Google Scholar 

  27. Rogers, S. O., and Bendich, A. J. (1985) Plant Mol. Biol., 5, 69–67.

    Article  CAS  Google Scholar 

  28. Chomczynski, P., and Sacchi, N. (1987) Anal. Biochem., 162, 156–159.

    Article  PubMed  CAS  Google Scholar 

  29. Rozen, S., and Skaletsky, H. (2000) Meth. Mol. Biol., 132, 365–386.

    CAS  Google Scholar 

  30. Mullis, K. B., and Faloona, F. A. (1987) Meth. Enzymol., 155, 335–350.

    Article  PubMed  CAS  Google Scholar 

  31. Nicot, N., Hausman, J.-F., Hoffmann, L., and Evers, D. (2005) J. Exp. Bot., 56, 2907–2914.

    Article  PubMed  CAS  Google Scholar 

  32. Livak, K. J., and Schmittgen, T. D. (2001) Methods, 25, 402–408.

    Article  PubMed  CAS  Google Scholar 

  33. Iglesias, A. A., and Andreo, C. S. (1990) Eur. J. Biochem., 192, 729–733.

    Article  PubMed  CAS  Google Scholar 

  34. Iglesias, A. A., Spampinato, C. P., and Andreo, C. S. (1991) Arch. Biochem. Biophys., 290, 272–276.

    Article  PubMed  CAS  Google Scholar 

  35. Connor, M. K., and Hood, D. A. (1998) J. Appl. Physiol., 84, 593–598.

    PubMed  CAS  Google Scholar 

  36. Hayashi, M., Mizoguchi, H., Shiraishi, N., Obayashi, M., Nakagawa, S., Imai, J., Watanabe, S., Ota, T., and Ikeda, M. (2002) Biosci. Biotechnol. Biochem., 66, 1337–1344.

    Article  PubMed  CAS  Google Scholar 

  37. Oh, M. K., and Liao, J. C. (2000) Biotechnol. Prog., 16, 278–286.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. T. Eprintsev.

Additional information

Original Russian Text © A. T. Eprintsev, M. A. Klimova, K. D. Shikhalieva, D. N. Fedorin, M. T. Dzhaber, E. I. Kompantseva, 2009, published in Biokhimiya, 2009, Vol. 74, No. 7, pp. 977–984.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eprintsev, A.T., Klimova, M.A., Shikhalieva, K.D. et al. Features of structural organization and expression regulation of malate dehydrogenase isoforms from Rhodobacter sphaeroides strain 2R. Biochemistry Moscow 74, 793–799 (2009). https://doi.org/10.1134/S000629790907013X

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S000629790907013X

Key words

Navigation