Skip to main content
Log in

Purification, characterization and kinetics of thiol protease inhibitor from goat (Capra hircus) lung

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

In the present study, two molecular forms of goat lung cystatin (GLC), I and II, were purified to homogeneity by a two-step procedure including ammonium sulfate precipitation (40–60%) and ion exchange chromatography. The inhibitor forms migrated as single bands under native and SDS-PAGE with and without reducing agent giving molecular mass of 66.4 and 76.4 kDa, respectively. GLC-I possesses 0.07% and GLC-II 2.3% carbohydrate content and no -SH groups. GLC-I showed greater affinity for papain than for ficin and bromelain. Immunological studies showed that the inhibitor was pure and there was cross reactivity between anti-GLC-I serum and goat brain cystatin. Both inhibitor forms were stable in the pH range of 3–10 and up to 75°C. GLC-I was found to possess 49% α-helical structure by CD spectroscopy. The inhibitor-papain complexes showed conformational changes as invoked by UV and fluorescence spectroscopic studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

GLC:

goat lung cystatin

References

  1. Barrett, A. J., Rawlings, N. D., Davies, M. E., Machleidt, W., Salvesen, G., and Turk, V. (1986) in Proteinase Inhibitors: Cysteine Proteinase Inhibitors of the Cystatin Superfamily (Barrett, A. J., and Salvesen, G., eds.) Elsevier, Amsterdam, pp. 515–569.

    Google Scholar 

  2. Dayhoff, M. O. (1976) in Atlas of Protein Sequence and Structure (Dayhoff, M. O., ed.) Vol. 5, National Biomedical Research Foundation, Washington, D.C., pp. 1–8.

    Google Scholar 

  3. Jankowska, E., Wiezk, W., and Grzonka, Z. (2004) Eur. Biophys. J., 33, 454–460.

    Article  PubMed  CAS  Google Scholar 

  4. Schnittger, S, Gopal Rao, V. V. N, Abrahamson, M., and Hansmann, I. (1993) Genomics, 16, 50–55.

    Article  PubMed  CAS  Google Scholar 

  5. Kato, H., Nagasawa, S., and Iwanaga, S. (1981) Meth. Enzymol., 251, 382–397.

    Google Scholar 

  6. Trabant, A., Gay, O. N., and Gay, R. S. (1991) Arthritis Rheum., 34, 444.

    Google Scholar 

  7. Delaisse, J. M., Ledent, P., and Vaes, G. (1991) Biochem. J., 279, 167–174.

    PubMed  CAS  Google Scholar 

  8. Kabanda, A., Goffin, E., and Bernard, A. (1995) Kidney Int., 48, 1946–1952.

    Article  PubMed  CAS  Google Scholar 

  9. Bernstein, H. G., Kirschke, H., and Wiederander, B. (1996) Mol. Chem. Neuropathol., 27, 225–247.

    Article  PubMed  CAS  Google Scholar 

  10. Buttle, D. J., Burnett, D., and Abrahamson, M. (1990) Scand. J. Clin. Lab. Invest., 50, 509–516.

    Article  PubMed  CAS  Google Scholar 

  11. Jensson, O., Palsdottir, A., Thorsteinsson, L., Arnason, A., Abrahamson, M., Olafsson, I., and Grubb, A. (1990) Biol. Chem. Hoppe-Seyler, 71, 229–232.

    Google Scholar 

  12. Kopper, P., Baici, A., Keist, R., Matzku, S., and Keller, R. (1994) Exp. Cell. Biol., 52, 293–299.

    Google Scholar 

  13. Shi, G. P., Sukhova, G. K., Grubb, A., Ducharme, A., Rhode, L. H., Lee, R. T., Ridker, P. M., Libby, P., and Chapman, H. A. (1999) J. Clin. Invest., 104, 1191–1197.

    Article  PubMed  CAS  Google Scholar 

  14. Assfalq Machleidt, I., Jochum, M., Klaubert, W., and Machleidt, W. (1998) Biol. Chem. Hoppe-Seyler, 369, 263–269.

    Google Scholar 

  15. North, M. J., Moltram, J. C., and Coombs, G. H. (1990) Parasitol. Today, 6, 270–275.

    Article  PubMed  CAS  Google Scholar 

  16. Bige, L., Ouali, A., and Valin, C. (1985) Biochim. Biophys. Acta, 843, 269–273.

    PubMed  CAS  Google Scholar 

  17. Zehra, S., Shahid, P. B., and Bano, B. (2005) Comp. Biochem. Physiol., Pt. B, 142, 361–368.

    Google Scholar 

  18. Jarvinen, M., and Rinnie, A. (1982) Biochim. Biophys. Acta, 708, 210–217.

    PubMed  CAS  Google Scholar 

  19. Green, G. D. J., Kembhavi, A. A., Davies, M. E., and Barrett, A. J. (1984) Biochem. J., 218, 39–46.

    Google Scholar 

  20. Rashid, F., Sharma, S., and Bano, B. (2006) Placenta, 2, 822–831.

    Article  Google Scholar 

  21. Shahid, P. B., Zehra, S., and Bano, B. (2005) Protein J., 24, 95–102.

    Article  Google Scholar 

  22. Synnes, M. (1998) Comp. Biochem. Physiol., Pt. B, 121, 257–264.

    Article  CAS  Google Scholar 

  23. Aghajanyan, H. G., Arzumanyan, A. M., Arutunyan, A. A., and Akyopyan, T. N. (1988) Neurochem. Res., 13, 721–727.

    Article  PubMed  CAS  Google Scholar 

  24. Sumbhul, S., and Bano, B. (2006) Neurochem. Res., 31, 1327–1333.

    Article  Google Scholar 

  25. Wolters, P. J., and Chapman, H. A. (2000) Respir. Res., 1, 170–177.

    Article  PubMed  CAS  Google Scholar 

  26. Kunitz, M. (1947) J. Gen. Physiol., 30, 291–310.

    Article  CAS  Google Scholar 

  27. Lowry, O. H., Rosebrough, N. J., and Farr, A. L. (1951) J. Biol. Chem., 193, 265–270.

    PubMed  CAS  Google Scholar 

  28. Laemmli, U. K. (1970) Nature, 227, 680–685.

    Article  PubMed  CAS  Google Scholar 

  29. Ellman, R. (1969) Biochem. Meth., 19, 446–451.

    Google Scholar 

  30. Dubois, M., Gilles, M. A., Hamilton, J. K., Rebers, P. A., and Smith, F. (1956) Anal. Chem., 28, 350–354.

    Article  CAS  Google Scholar 

  31. Ouchterlony, O. (1962) Acta Pathol. Microbiol. Scand., 26, 579–599.

    Google Scholar 

  32. Voller, A., Bidwell, D. E., and Bartlett, A. (1976) Bull. World Health Organ., 53, 55–65.

    PubMed  CAS  Google Scholar 

  33. Hiriado, M., Iwata, A., Niinobe, E. M., and Fuji, S. (1981) Biochim. Biophys. Acta, 669, 21–27.

    Google Scholar 

  34. Zabari, M, Berri, M, Rouchon, M, et al. (1993) Biochimie, 75, 937–945.

    Article  PubMed  CAS  Google Scholar 

  35. Zabari, M, Berri, M, Rouchon, P, Zamora, F, Tassy, C, Ribadeau-Dumas, B., and Ouali, A. (1993) Biochimie, 75, 937–945.

    Article  PubMed  CAS  Google Scholar 

  36. Wu, J., and Haard, N. F. (2000) Biochem. Physiol., Pt. C, 127, 209–220.

    CAS  Google Scholar 

  37. Ni, J., Fernandez, M. A., Danielsson, L., Chillakuru, R. A., Zhang, J., Grubb, A., Su, J., Gentz, R., and Abrahamson, M. (1998) J. Biol. Chem., 273, 24797–24804.

    Article  PubMed  CAS  Google Scholar 

  38. Sotiropoulou, G., Anisowicz, A., and Sager, R. (1997) J. Biol. Chem., 272, 903–910.

    Article  PubMed  CAS  Google Scholar 

  39. Warwas, M., and Sawicki, G. (1985) Placenta, 6, 455–463.

    Article  PubMed  CAS  Google Scholar 

  40. Li, F., An, M., and Baynes, T. L. (2000) Comp. Biochem. Physiol., Pt. B, 125, 493–502.

    Article  CAS  Google Scholar 

  41. Nicklin, M. J. H., and Barret, A. J. (1984) Biochem. J., 223, 245–253.

    PubMed  CAS  Google Scholar 

  42. Donovan, J. W. (1969) in Physical Principles and Techniques of Protein Chemistry, Pt. A (Leach, S. J., ed.) Academic Press, New York, pp. 101–170.

    Google Scholar 

  43. Donovan, J. W. (1973) Meth. Enzymol., 27, 525–548.

    Article  PubMed  CAS  Google Scholar 

  44. Friefelder, D. (1982) Physical Biochemistry, 2nd Edn., WH Freeman and Company, New York.

    Google Scholar 

  45. James, F. L., Jeffery, R. T., Wesley, J. S., and Alan, G. L. (1979) Eur. J. Biochem., 101, 153–161.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bilqees Bano.

Additional information

Published in Russian in Biokhimiya, 2009, Vol. 74, No. 7, pp. 963–971.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khan, M.S., Bano, B. Purification, characterization and kinetics of thiol protease inhibitor from goat (Capra hircus) lung. Biochemistry Moscow 74, 781–788 (2009). https://doi.org/10.1134/S0006297909070116

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297909070116

Key words

Navigation