Skip to main content
Log in

Superoxide formation as a result of interaction of L-lysine with dicarbonyl compounds and its possible mechanism

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

The EPR signal recorded in reaction medium containing L-lysine and methylglyoxal is supposed to come from the anion radical (semidione) of methylglyoxal and cation radical of methylglyoxal dialkylimine. These free radical inter-mediates might be formed as a result of electron transfer from dialkylimine to methylglyoxal. The EPR signal was observed in a nitrogen atmosphere, whereas only trace amounts of free radicals were registered under aerobic conditions. It has been established that the decay of methylglyoxal anion radical on aeration of the medium is inhibited by superoxide dismutase. Using the methods of EPR spectroscopy and lucigenin-dependent chemiluminescence, it has been shown that nonenzymatic generation of free radicals including superoxide anion radical takes place during the interaction of L-lysine with methylglyoxal — an intermediate of carbonyl stress — at different (including physiological) pH values. In the course of analogous reaction of L-lysine with malondialdehyde (the secondary product of the free radical derived oxidation of lipids), the formation of organic free radicals or superoxide radical was not observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

LDL:

low density lipoproteins

MDA:

malondialdehyde

MG:

methylglyoxal

NBT:

nitro blue tetrazolium

SOD:

superoxide dismutase

References

  1. Lo, T. W. C., Westwood, M. E., McLellan, A. C., Selwood, T., and Thornalley, P. J. (1994) J. Biol. Chem., 269, 32299–32305.

    PubMed  CAS  Google Scholar 

  2. Requena, J. R., Fu, M. X., Ahmed, M. U., Jenkins, A. J., Lyons, T. J., Baynes, J. W., and Thorpe, S. R. (1997) Biochem. J., 322, 317–325.

    PubMed  CAS  Google Scholar 

  3. Stadtman, E. R., and Berlett, B. S. (1998) Drug Metab. Rev., 30, 225–243.

    Article  PubMed  CAS  Google Scholar 

  4. Brennan, M. L., and Hazen, S. L. (2003) Amino Acids, 25, 365–374.

    Article  PubMed  CAS  Google Scholar 

  5. Stadtman, E. R., and Levine, R. L. (2003) Amino Acids, 25, 207–218.

    Article  PubMed  CAS  Google Scholar 

  6. Thorpe, S. R., and Baynes, J. W. (2003) Amino Acids, 25, 275–281.

    Article  PubMed  CAS  Google Scholar 

  7. Uchida, K. (2003) Amino Acids, 25, 249–257.

    Article  PubMed  CAS  Google Scholar 

  8. Bourajjaj, M., Stehouwer, C. D. A., van Hinsbergh, V. W. M., and Schalkwijk, C. G. (2003) Biochem. Soc. Trans., 31, 1400–1402.

    Article  PubMed  CAS  Google Scholar 

  9. Goldin, A., Beckman, J. A., Schmidt, A. M., and Creager, M. A. (2006) Circulation, 114, 597–605.

    Article  PubMed  CAS  Google Scholar 

  10. Rosca, M. G., Mustada, T. G., Kinter, M. T., Ozdemir, A. M., Kern, T. S., Szweda, L. I., Brownlee, M., Monnier, V. M., and Weiss, M. F. (2005) Am. J. Physiol. Renal. Physiol., 289, 420–430.

    Article  Google Scholar 

  11. Lankin, V. Z., Tikhaze, A. K., Kapelko, V. I., Shepelkova, G. S., Shumaev, K. B., Panasenko, O. M., Konovalova, G. G., and Belenkov, Yu. N. (2007) Biochemistry (Moscow), 72, 1081–1090.

    Article  CAS  Google Scholar 

  12. Yim, H.-S., Kang, S.-O., Hah, Y.-Ch., Chock, P. B., and Yim, M. B. (1995) J. Biol. Chem., 270, 28228–28233.

    Article  PubMed  CAS  Google Scholar 

  13. Thornalley, P. J. (1985) Environ. Health Perspect., 64, 297–307.

    Article  PubMed  CAS  Google Scholar 

  14. Thornalley, P. J. (1993) Mol. Aspects Med., 14, 287–371.

    Article  PubMed  CAS  Google Scholar 

  15. Suji, G., and Sivakami, S. (2007) Amino Acids, 33, 615–621.

    Article  PubMed  CAS  Google Scholar 

  16. McLaughlin, J. A., Pethig, R., and Szent-Gyorgyi, A. (1980) Proc. Natl. Acad. Sci. USA, 77, 949–951.

    Article  PubMed  CAS  Google Scholar 

  17. Kamiya, N. M., and Kamiya, H. (2001) Nucleic Acids Res., 29, 3433–3438.

    Article  PubMed  Google Scholar 

  18. Tarpey, M. M., Wink, D. A., and Grisham, M. B. (2004) Am. J. Physiol. Regul. Integr. Comp. Physiol., 286, R431–R444.

    PubMed  CAS  Google Scholar 

  19. Bisby, R. H., and Paker, A. W. (1991) FEBS Lett., 290, 205–208.

    Article  PubMed  CAS  Google Scholar 

  20. D’Alessandro, N., Bianchi, G., Fang, X. J. F., Schuchmann, H.-P., and von Sontag, C. (2000) J. Chem. Perkin Trans., 2, 1862–1867.

    Article  Google Scholar 

  21. Berberova, N. T. (1999) Soros Ed. J., 5, 48–53.

    Google Scholar 

  22. Griffiths, H. R. (2005) The Handbook of Environmental Chemistry, 2, 33–62.

    CAS  Google Scholar 

  23. Mason, R. P. (1990) Environ. Health Perspect., 87, 237–243.

    Article  PubMed  CAS  Google Scholar 

  24. Niviere, V., and Fontecave, M. (1995) in Analysis of Free Radicals in Biological Systems (Favier, A. E., Cadet, J., Kalyanaraman, B., Fontecave, M., and Pierre, J.-L., eds.) Bizkauser, Grenoble, pp. 17–18.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Z. Lankin.

Additional information

Original Russian Text © K. B. Shumaev, S. A. Gubkina, E. M. Kumskova, G. S. Shepelkova, E. K. Ruuge, V. Z. Lankin, 2009, published in Biokhimiya, 2009, Vol. 74, No. 4, pp. 568–574.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shumaev, K.B., Gubkina, S.A., Kumskova, E.M. et al. Superoxide formation as a result of interaction of L-lysine with dicarbonyl compounds and its possible mechanism. Biochemistry Moscow 74, 461–466 (2009). https://doi.org/10.1134/S0006297909040154

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297909040154

Key words

Navigation