Skip to main content
Log in

Inactivation of genes encoding superoxide dismutase modifies yeast response to S-nitrosoglutathione-induced stress

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Antioxidant enzymes can modify cell response to nitrosative stress induced, for example, by nitric oxide or compounds decomposing with its formation. Therefore, we investigated the effects of S-nitrosoglutathione (GSNO) on cell survival, activity of antioxidant enzymes, and concentrations of reduced and oxidized glutathione in parental and isogenic strains defective in Cu,Zn- or Mn-superoxide dismutases (Cu,Zn-SOD and Mn-SOD, respectively), or in both of them. Stress was induced by incubation of the yeast with 1–20 mM GSNO. The strains used demonstrated different sensitivity to GSNO. A Cu,Zn-SOD-defective strain survived the stress better than the parental strain, while the double mutant was the most sensitive to GSNO. The ·NO-donor at low concentrations (1–5 mM) increased SOD activity, but its high concentrations (10 and 20 mM) decreased it. The activity of catalase in all strains was enhanced by GSNO. Inhibition of protein synthesis by cycloheximide did not prevent the activation of SOD, but it prevented the activation of catalase. These facts suggest that SOD was activated at a posttranslational level and catalase activity was enhanced via de novo synthesis. A GSNO-induced increase in oxidized glutathione level in the studied yeast strains might account for cell killing by GSNO due to the development of oxidative/nitrosative stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

GR:

glutathione reductase

GSH:

reduced glutathione

GSNO:

S-nitrosoglutathione

GSSG:

oxidized glutathione

·NO:

nitric oxide

RNS:

reactive nitrogen species

SOD:

superoxide dismutase

References

  1. Jakubowski, W., Bilinski, T., and Bartosz, G. (1999) Biochim. Biophys. Acta, 1472, 395–398.

    PubMed  CAS  Google Scholar 

  2. Horan, S., Bourges, I., and Meunier, B. (2006) Yeast, 23, 519–535.

    Article  PubMed  CAS  Google Scholar 

  3. Sahoo, R., Dutta, T., Das, A., Ray, S. S., Sengupta, R., and Ghosh, S. (2006) Free Rad. Biol. Med., 40, 625–631.

    Article  PubMed  CAS  Google Scholar 

  4. Cassanova, N., O’Brien, K. M., Stahl, B. T., McClure, T., and Poyton, R. O. (2005) J. Biol. Chem., 280, 7645–7653.

    Article  PubMed  CAS  Google Scholar 

  5. Liu, L., Zeng, M., Hausladen, A., Heitman, J., and Stamler, J. S. (2000) Proc. Natl. Acad. Sci. USA, 97, 4672–4676.

    Article  PubMed  CAS  Google Scholar 

  6. Noble, D. R., Swift, H. R., and Williams, D. L. H. (1999) Chem. Commun., 2317–2318.

  7. Liu, S. X., Xuan, B. O., Chen, Z., Varma, R. S., and Chiou, G. C. (1997) J. Ocul. Pharmacol. Ther., 13, 105–114.

    Article  PubMed  CAS  Google Scholar 

  8. Gralla, E. B., and Valentine, J. S. (1991) J. Bacteriol., 173, 5918–5920.

    PubMed  CAS  Google Scholar 

  9. Lushchak, V., Semchyshyn, H., Lushchak, O., and Mandryk, S. (2005) Biochem. Biophys. Res. Commun., 338, 1739–1744.

    Article  PubMed  CAS  Google Scholar 

  10. Lushchak, V., Semchyshyn, H., Mandryk, S., and Lushchak, O. (2005) Arch. Biochem. Biophys., 441, 35–40.

    Article  PubMed  CAS  Google Scholar 

  11. Akerboom, T. P. M., and Sies, H. (1981) Meth. Enzymol., 77, 373–382.

    Article  PubMed  CAS  Google Scholar 

  12. Bradford, M. M. (1976) Anal. Biochem., 72, 289–292.

    Article  Google Scholar 

  13. Klink, M., Swierzko, A., and Sulowska, Z. (2001) Apmis, 109, 493–499.

    Article  PubMed  CAS  Google Scholar 

  14. Gralla, E. B. (1997) in Oxidative Stress and the Molecular Biology of Antioxidant Defenses (Scandalios, J. G., ed.) Cold Spring Harbor Press, N. Y., pp. 495–525.

    Google Scholar 

  15. Bayliak, M. M., Semchyshyn, H. M., and Lushchak, V. I. (2006) Biochemistry (Moscow), 71, 1013–1020.

    Article  CAS  Google Scholar 

  16. Alvarez, B., and Radi, R. (2003) Amino Acids, 25, 295–311.

    Article  PubMed  CAS  Google Scholar 

  17. Lushchak, O. V., and Lushchak, V. I. (2008) Redox Report, 13, 144–152.

    Article  PubMed  CAS  Google Scholar 

  18. Kim, Y.-M., Bergonia, H. A., Muller, C., Pitt, B. R., Watkins, W. D., and Lancaster, J. R. (1995) Adv. Pharmacol., 34, 277–291.

    Article  PubMed  CAS  Google Scholar 

  19. Wink, D. A., Hanbauer, I., Grisham, M. B., Laval, F., Nims, R. W., Laval, J., Cook, J., Pacelli, R., Liebmann, J., Krishna, M., Ford, R. C., and Mitchell, J. B. (1996) Curr. Top. Cell. Regul., 34, 159–187.

    Article  PubMed  CAS  Google Scholar 

  20. Halliwell, B., and Gutterige, J. M. C. (1989) Free Radicals in Biology and Medicine, Clarendon Press, Oxford.

    Google Scholar 

  21. Longo, V. D., Gralla, E. B., and Valentine, J. S. (1996) J. Biol. Chem., 271, 12275–12280.

    Article  PubMed  CAS  Google Scholar 

  22. Radi, R., Beckman, J. S., Bush, K. M., and Freeman, B. A. (1991) J. Biol. Chem., 266, 4244–4250.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. I. Lushchak.

Additional information

Published in Russian in Biokhimiya, 2009, Vol. 74, No. 4, pp. 550–557.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lushchak, O.V., Nykorak, N.Z., Ohdate, T. et al. Inactivation of genes encoding superoxide dismutase modifies yeast response to S-nitrosoglutathione-induced stress. Biochemistry Moscow 74, 445–451 (2009). https://doi.org/10.1134/S0006297909040130

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297909040130

Key words

Navigation