Skip to main content
Log in

Effect of solvent phase transitions on enzymatic activity and structure of laccase from Coriolus hirsutus

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

The effect of solvent phase transitions on catalytic activity and structure of the active site of laccase produced by the Basidiomycetes Coriolus hirsutus 072 was studied. As shown by small-angle X-ray scattering, laccase exists in solution as a mixture of monomeric and aggregated particles in the percent ratio 85: 15. This ratio did not change on phase transitions. A complex nature of laccase activity dynamics during thawing and further heating to 20°C was shown. Spontaneous oxidation of T1 copper center in the temperature range 12–20°C was not observed. According to spectral data, the structure of laccase active sites including all copper centers of types T1, T2, and T3 changes during the phase transition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Solomon, E. I., Sundaram, U. M., and Machonkin, T. E. (1996) Chem. Rev., 96, 2563–2605.

    Article  PubMed  CAS  Google Scholar 

  2. Yaropolov, A. I., Skorobogat’ko, O. V., Vartanov, S. S., and Varfolomeyev, S. D. (1994) Appl. Biochim. Biotech., 49, 257–280.

    Article  CAS  Google Scholar 

  3. Xu, F. (1999) in Encyclopedia of Bioprocess Technology: Fermentation, Biocatalysis, Bioseparation (Flickinger, M. C., and Drew, S. W., eds.) John Wiley & Sons Inc., New York, pp. 1545–1554.

    Google Scholar 

  4. Smith, M., and Thurnston, C. F. (1997) in Multi-Copper Oxidases (Messerschmidt, A., ed.) World Scientific, Singapore-New Jersey-London-Hong Kong, pp. 253–259.

    Google Scholar 

  5. Piontek, K., Antorini, M., and Choinowski, T. (2002) J. Biol. Chem., 277, 37663–37669.

    Article  PubMed  CAS  Google Scholar 

  6. Nakamura, K., and Go, N. (2005) Cell. Mol. Life Sci., 62, 2050–2066.

    Article  PubMed  CAS  Google Scholar 

  7. Xu, F., Shin, W., Brown, S. H., Wahleithner, J. A., Sundaram, U. M., and Solomon, E. I. (1996) Biochim. Biophys. Acta, 1292, 303–311.

    PubMed  Google Scholar 

  8. Eggert, C., LaFayette, P. R., Temp, U., Eriksson, K. E., and Dean, J. F. (1998) Appl. Environ. Microbiol., 64, 1766–1772.

    PubMed  CAS  Google Scholar 

  9. Koroleva (Skorobogat’ko), O., Stepanova, E., Gavrilova, V., Morozova, O., Lubimova, N., Dzchafarova, A., Jaropolov, A., and Makower, A. (1998) J. Biotechnol. Appl. Biochem. (Moscow), 28, 47–54.

    Google Scholar 

  10. Koroleva (Skorobogat’ko), O., Stepanova, E., Gavrilova, V., Biniukov, V., Jaropolov, A., Varfolomeyev, S., Scheller, F., Makower, A., and Otto, A. (1998) Appl. Biochem. Biotechnol., 61, 618–627.

    Google Scholar 

  11. Stepanova, E. V., Gavrilova, V. P., Landesman, E. O., Pegasova, T. V., and Koroleva, O. V. (2003) Prikl. Biokhim. Mikrobiol., 39, 375–381.

    CAS  Google Scholar 

  12. Koroleva, O. V., Stepanova, E. V., Binukov, V. I., Timofeev, V. P., and Pfeil, W. (2001) Biochim. Biophys. Acta, 1547, 397–407.

    PubMed  CAS  Google Scholar 

  13. Stepanova, E. V., Koroleva, O. V., Gavrilova, V. P., Landesman, E. O., Makover, A., and Papkovsky, D. B. (2003) Prikl. Biokhim. Mikrobiol., 39, 549–554.

    PubMed  CAS  Google Scholar 

  14. Gibson, T. D., and Woodward, J. R. (1992) in Biosensors and Chemical Sensors (Eldman, P. G., and Wang, J., eds.) ACS Books, pp. 40–55.

  15. Alden, M., and Magnusson, A. (1997) Pharm. Res., 4, 426–430.

    Article  Google Scholar 

  16. Huang, H.-W., Sakurai, T., Monjushiro, H., and Takeda, S. (1998) Biochim. Biophys. Acta, 1384, 160–170.

    PubMed  CAS  Google Scholar 

  17. Huang, H.-W., Sakurai, T., Maritano, S., Marchesini, A., and Suzuki, S. (1999) J. Inorg. Biochem., 75, 19–25.

    Article  CAS  Google Scholar 

  18. Sakurai, T., and Takahashi, J. (1995) Biochem. Biophys. Res. Commun., 215, 235–240.

    Article  PubMed  CAS  Google Scholar 

  19. Calabrese, L., Carbonaro, M., and Musci, G. (1988) J. Biol. Chem., 263, 6480–6483.

    PubMed  CAS  Google Scholar 

  20. Shleev, S., Reimann, C. T., Serezhenkov, V., Burbaev, D., Yaropolov, A. I., Gorton, L., and Ruzgas, T. (2006) Biochimie, 88, 1275–1285.

    Article  PubMed  CAS  Google Scholar 

  21. Baldrian, P. (2006) FEMS Microbiol. Rev., 30, 215–242.

    Article  PubMed  CAS  Google Scholar 

  22. Koroleva, O. V., Stepanova, E. V., Gavrilova, V. P., Yakovleva, N. S., Landesman, E. O., Yavmetdinov, I. S., and Yaropolov, A. I. (2002) J. Biosci. Bioeng., 93, 449–455.

    PubMed  CAS  Google Scholar 

  23. Westermeier, R. (1993) Electrophoresis in Practice, VCH Verlags-gesellschaft, Weinheim and VCH Publishers Inc., New York.

    Google Scholar 

  24. Varfolomeev, S. D., Naki, A., and Yaropolov, A. I. (1985) Biokhimiya, 50, 1411–1419.

    CAS  Google Scholar 

  25. Gorbatova, O. N., Stepanova, E. V., and Koroleva, O. V. (2000) Prikl. Biokhim. Mikrobiol., 36, 272–277.

    PubMed  CAS  Google Scholar 

  26. Svergun, D. I., and Feigin, L. A. (1987) X-Ray and Neutron Low-Angle Scattering [in Russian], Nauka, Moscow, p. 280.

    Google Scholar 

  27. Svergun, D. I., Semenyuk, A. V., and Feigin, L. A. (1988) Acta Cryst. A., 24, 244–251.

    Article  Google Scholar 

  28. Maritano, S., Carsughi, F., Fontana, M. P., and Marchesini, A. (1996) J. Mol. Struct., 383, 261–265.

    Article  CAS  Google Scholar 

  29. Svergun, D. I., Volkov, V. V., Kozin, M. B., Stuhrmann, H. B., Barberato, C., and Koch, M. H. (1997) J. Appl. Cryst., 30, 798–802.

    Article  Google Scholar 

  30. Lee, S. K., George, S. D., Antholine, W. E., Hedman, B., Hodgson, K. O., and Solomon, E. I. (2002) J. Am. Chem. Soc., 124, 6180–6193.

    Article  PubMed  CAS  Google Scholar 

  31. Palmer, A. E., Lee, S. K., and Solomon, E. I. (2001) J. Am. Chem. Soc., 123, 6591–6599.

    Article  PubMed  CAS  Google Scholar 

  32. Yoon, J., Liboiron, B. D., Sarangi, R., Hodgson, K. O., Hedman, B., and Solomon, E. I. (2007) PNAS, 104, 13609–13614.

    Article  PubMed  CAS  Google Scholar 

  33. Cordi, L., Minussi, R. C., Freire, R. S., and Duran, N. (2007) Afr. J. Biotechnol., 6, 1255–1259.

    CAS  Google Scholar 

  34. Cole, A. P., Root, D. E., Mukherjee, P., Solomon, E. I., and Stack, T. D. P. (1996) Science, 273, 1848–1850.

    Article  PubMed  Google Scholar 

  35. Gromov, I., Marchesini, A., Farver, O., Pecht, I., and Goldfard, D. (1999) FEBS Eur. J. Biochem., 266, 820–830.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. V. Koroleva.

Additional information

Original Russian Text © E. V. Stepanova, T. V. Fedorova, O. N. Sorokina, V. V. Volkov, O. V. Koroleva, A. T. Dembo, 2009, published in Biokhimiya, 2009, Vol. 74, No. 4, pp. 476–485.

Originally published in Biochemistry (Moscow) On-Line Papers in Press, as Manuscript BM08-245, December 28, 2008.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stepanova, E.V., Fedorova, T.V., Sorokina, O.N. et al. Effect of solvent phase transitions on enzymatic activity and structure of laccase from Coriolus hirsutus . Biochemistry Moscow 74, 385–392 (2009). https://doi.org/10.1134/S0006297909040051

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297909040051

Key words

Navigation