Skip to main content
Log in

Correlation between hepatocarcinogenic effect of estragole and its influence on glucocorticoid induction of liver-specific enzymes and activities of FOXA and HNF4 transcription factors in mouse and rat liver

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

It is known that the carcinogenic effect of estragole, a component of essential oils of many spicy plants, is characterized by species, tissue, and sex specificity. It causes mainly liver tumors in female mice but is not carcinogenic for male mice and for rats. In this work, the estragole hepatocarcinogenicity was shown for female mice of previously not studied ICR line. The strict correlation between estragole hepatocarcinogenicity and its ability to decrease the level of glucocorticoid induction of liver-specific enzymes tyrosine aminotransferase (TAT) and tryptophan oxygenase (TO) was found. Inhibition of TAT and TO inducibility by estragole takes place only in female mice but not in male mice and in rats. Studying the estragole effect on DNA-binding activity of transcription factors, present mainly in liver and regulating expression of genes encoding liver-specific proteins, has shown that estragole decreases FOXA and HNF4 activities but not activities of C/EBP and HNF1, and this happens only in female mice, for which this substance is hepatocarcinogen, but not in male mice and in rats. Pentachlorophenol, preventing hepatocarcinogenic effect of estragole, abolishes inhibitory influence of the latter on the TAT and TO glucocorticoid induction and restores DNA-binding activity of FOXA and HNF4. Thus, a correlation was revealed between the estragole hepatocarcinogenic effect and decrease in DNA-binding activity of transcription factors FOXA and HNF4, which might be indicative of the role of these factors in tumor suppression mechanisms in liver.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

C/EBP:

CCAAT/enhancer binding protein

DENA:

diethylnitrosamine

FOXA:

family of A proteins containing fox domain (forkheadbox A)

HNF1, -4:

hepatocyte nuclear factors 1 and 4

i.p.:

intraperitoneal

3′-MeDAB:

3′-methyl-4-dimethylaminobenzene

OAT:

ortho-aminoazotoluene

TAT:

L-tyrosine:2-oxoglutarate aminotransferase

TO:

L-tryptophan:oxygen2,3-oxidoreductase

References

  1. Anderson, R. A., Raina, P. N., and Milholland, R. J. (1966) Oncologia, 20, 153–166.

    Article  Google Scholar 

  2. Fiala, S., and Fiala, A. E. (1959) Brit. J. Cancer, 13, 236–250.

    PubMed  CAS  Google Scholar 

  3. Kensler, T. W., Busby, W. F., Davidson, N. E., and Wogan, G. N. (1976) Cancer Res., 36, 4647–4651.

    PubMed  CAS  Google Scholar 

  4. Horikoshi, N., Tashiro, F., Tanaka, N., and Ueno, Y. (1988) Cancer Res., 48, 5188–5192.

    PubMed  CAS  Google Scholar 

  5. Kaledin, V. I., and Zakharova, N. P. (1984) in Investigations. on Malignant Tumor Induction and Metastasis in Experimental Animals (Gruntenko, E. V., ed.) [in Russian], Novosibirsk, pp. 146–185.

  6. Merkulova, T. I., Kropachev, K. Y., Timofeeva, O. A., Vasiliev, G. V., Levashova, Z. B., Ilnitskaya, S. I., Kobzev, V. F., Pakharukova, M. Y., Bryzgalov, L. O., and Kaledin, V. I. (2005) Mol. Carcinog., 44, 223–232.

    Article  PubMed  CAS  Google Scholar 

  7. Merkulova, T. I., Kaledin, V. I., Kropachev, K. Y., Kobzev, V. F., and Vasiliev, G. V. (1998) Doklady RAN, 361, 700–703.

    CAS  Google Scholar 

  8. Kropachev, K. Y., Kaledin, V. I., Kobzev, V. F., Plisov, S. Y., and Merkulova, T. I. (2001) Mol. Carcinog., 31, 10–15.

    Article  PubMed  CAS  Google Scholar 

  9. Roux, J., Pictet, P., and Grange, T. (1995) DNA Cell Biol., 14, 17–20.

    Article  Google Scholar 

  10. Schrem, H., Klempnauer, J., and Borlak, J. (2002) Pharmacol. Rev., 54, 129–158.

    Article  PubMed  CAS  Google Scholar 

  11. Nakamura, T., Mura, T., Saito, K., Ohsawa, T., Akiyoshi, H., and Sato, K. (1998) Biochem. Biophys. Res. Commun., 253, 352–357.

    Article  PubMed  CAS  Google Scholar 

  12. Miller, E. C., Swanson, A. B., Phillips, D. H., Fletcher, T. L., Liem, A., and Miller, J. A. (1983) Cancer Res., 43, 1124–1134.

    PubMed  CAS  Google Scholar 

  13. Cereghini, S., Raymondjen, M., Carranca, A., Herbomel, P., and Yaniv, M. (1987) Cell, 50, 627–638.

    Article  PubMed  CAS  Google Scholar 

  14. Lai, E., Prezioso, V., Smith, E., Litvin, O., Costa, R., and Darnell, J. (1990) Genes Dev., 4, 1427–1436.

    Article  PubMed  CAS  Google Scholar 

  15. Espinas, M., Roux, J., Ghysdael, J., Pictet, R., and Grange, T. (1994) Mol. Cell Biol., 14, 4116–4125.

    PubMed  CAS  Google Scholar 

  16. Nitch, D., Boshart, M., and Schutz, G. (1993) Proc. Natl. Acad. Sci. USA, 90, 5479–5483.

    Article  Google Scholar 

  17. Diehl, A. M., and Yang, S. Q. (1994) Hepatology, 19, 447–456.

    PubMed  CAS  Google Scholar 

  18. Kaledin, V. I., Klimova, N. V., Vasiliev, G. V., Ivanova, E. A., Vasilieva, E. D., and Ilnitskaya, S. I. (2003) Byul. Eksp. Biol. Med., 136, 435–437.

    Article  Google Scholar 

  19. Merkulova, T. I., Kropachev, K. Y., Timofeeva, O. A., Vasiliev, G. V., Ilnitskaya, S. I., Levashova, Z. B., Kobzev, V. F., and Kaledin, V. I. (2003) Biochemistry (Moscow), 68, 520–528.

    Article  CAS  Google Scholar 

  20. Kaledin, V. I., Vasyunina, E. A., Ovchinnikova, L. P., Ronichevskaya, G. M., Zvereva, L. N., and Ilnitskaya, S. I. (2002) Vestnik VOGIS, 21/22, 11–19.

    Google Scholar 

  21. Kaledin, V. I., Glazko, T. T., and Zakharova, N. N. (1979) Doklady RAN, 244, 233–237.

    CAS  Google Scholar 

  22. Boberg, E. W., Miller, E. C., Miller, J. A., Poland, A., and Liem, A. (1983) Cancer Res., 43, 5163–5173.

    PubMed  CAS  Google Scholar 

  23. Bock, K. W., and Schirmer, G. (1987) Arch. Toxicol. Suppl., 10, 125–135.

    PubMed  CAS  Google Scholar 

  24. Kaltschmidt, C., Muller, M., Brem, G., and Renkawitz, R. (1994) Mech. Dev., 45, 203–210.

    Article  PubMed  CAS  Google Scholar 

  25. Schoneveld, O. J., Gaemers, I. C., and Lamers, W. H. (2004) Biochim. Biophys. Acta, 1680, 114–128.

    PubMed  CAS  Google Scholar 

  26. Kropachev, K. Y., Pakharukova, M. Yu., Bryzgalov, L. O., Kaledin, V. I., Kobzev, V. F., and Merkulova, T. I. (2004) Doklady RAN, 397, 694–696.

    Google Scholar 

  27. Drinkwater, N. R., Miller, E. C., Miller, J. A., and Pitot, H. C. (1976) J. Nat. Cancer Inst., 57, 1323–1331.

    PubMed  CAS  Google Scholar 

  28. Granner, D. K., and Hargrove, J. L. (1983) Mol. Cell. Biochem., 53/54, 113–128.

    Article  Google Scholar 

  29. Schmid, W., Scherer, G., Dabtsch, H., Patric, M., and Schutz, G. (1982) EMBO J., 1, 1287–1293.

    PubMed  CAS  Google Scholar 

  30. Pakharukova, M. Yu., Smetanina, M. A., Kaledin, V. I., Kobzev, V. F., Romanova, I. V., and Merkulova, T. I. (2007) Byul. Eksp. Biol. Med., 144, 313–316.

    Google Scholar 

  31. Grange, T., Roux, J., Rigaud, G., and Pictet, R. (1991) Nucleic Acids Res., 19, 131–139.

    Article  PubMed  CAS  Google Scholar 

  32. Schrem, H., Klempnauer, J., and Borlak, J. (2004) Pharmacol. Rev., 56, 291–330.

    Article  PubMed  CAS  Google Scholar 

  33. Abelev, G. I., and Lazarevich, N. L. (2006) Adv. Cancer Res., 95, 61–113.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Yu. Pakharukova.

Additional information

Original Russian Text © V. I. Kaledin, M. Yu. Pakharukova, E. N. Pivovarova, K. Yu. Kropachev, N. V. Baginskaya, E. D. Vasilieva, S. I. Ilnitskaya, E. V. Nikitenko, V. F. Kobzev, T. I. Merkulova, 2009, published in Biokhimiya, 2009, Vol. 74, No. 4, pp. 466–475.

Originally published in Biochemistry (Moscow) On-Line Papers in Press, as Manuscript BM08-210, December 21, 2008.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaledin, V.I., Pakharukova, M.Y., Pivovarova, E.N. et al. Correlation between hepatocarcinogenic effect of estragole and its influence on glucocorticoid induction of liver-specific enzymes and activities of FOXA and HNF4 transcription factors in mouse and rat liver. Biochemistry Moscow 74, 377–384 (2009). https://doi.org/10.1134/S000629790904004X

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S000629790904004X

Key words

Navigation