Skip to main content
Log in

Features of mitochondrial energetics in living unicellular eukaryote Tetrahymena pyriformis. A model for study of mammalian intracellular adaptation

  • Accelerated Publication
  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Tetrahymena pyriformis is used in diverse studies as a non-mammalian alternative due to their resemblance in many main metabolic cycles. However, such basic features of mitochondrial energetics as ΔΨ (electrical potential difference across the inner mitochondrial membrane) or maximal stimulation of respiration by uncouplers with different mechanisms of uncoupling, such as DNP (2,4-dinitrophenol) and FCCP (p-trifluoromethoxycarbonylcyanide phenylhydrazone), have not been studied in living ciliates. Tetrahymena pyriformis GL cells during stationary growth phase after incubation under selected conditions were used in this study. Maximal stimulation of cellular respiration by FCCP was about six-fold, thus the proton motive force was high. The DNP uncoupling effect was significantly lower. This suggests low activity of the ATP/ADP-antiporter, which performs not only exchange of intramitochondrial ATP to extramitochondrial ADP, but also helps in the uncoupling process. It participates by a similar mechanism in electrophoretic transport from matrix to cytosol of ATP4− and DNP anion, but not FCCP anion. Thus, in contrast with mammalian mitochondria, T. pyriformis mitochondria cannot rapidly supply the cytosol with ATP; possibly the cells need high intramitochondrial ATP. The difference between DNP and FCCP is hypothetically explained by low ΔΨ value and/or an increase in concentration of long-chain acyl-CoAs, inhibitors of the ATP/ADP-antiporter. The first suggestion is confirmed by absence of mitochondria with bright fluorescence in T. pyriformis stained with the ΔΨ-sensitive probe MitoTracker Red. These data suggest that T. pyriformis cells are useful as a model for study of mitochondrial role in adaptation at the intracellular level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

BSA:

bovine serum albumin

DNP:

2,4-dinitrophenol

FCCP:

p-trifluoromethoxycarbonylcyanide phenylhydrazone

ΔΨ:

transmembrane difference of electrical potential across the inner mitochondrial membrane

ΔpH:

difference in hydrogen ion concentrations between the two sides of the inner mitochondrial membrane

References

  1. Levy, M. R. (1973) in Biology of Tetrahymena (Elliott, A. M., ed.) Dowden, Hutchinson and Ross, Inc, Stroudsburg, Pennsylvania, pp. 227–257.

    Google Scholar 

  2. Hutner, S. H., Baker, H., Frank, O., and Cox, D. (1973) in Biology of Tetrahymena (Elliott, A. M., ed.) Dowden, Hutchinson and Ross, Inc, Stroudsburg, Pennsylvania, pp. 411–433.

    Google Scholar 

  3. Kohidai, L., Vakkuri, O., Keresztesi, M., Leppaluoto, J., and Csaba, G. (2002) Cell Biochem. Funct., 20, 269–272.

    Article  PubMed  CAS  Google Scholar 

  4. Csaba, G., and Pallinger, E. (2008) Cell Biochem. Funct., 26, 303–308.

    Article  PubMed  CAS  Google Scholar 

  5. Sauvant, M. P., Pepin, D., and Piccini, E. (1999) Chemosphere, 38, 1631–1669.

    Article  PubMed  CAS  Google Scholar 

  6. Kilpatrick, L., and Erecinska, M. (1977) Biochim. Biophys. Acta, 460, 346–363.

    Article  PubMed  CAS  Google Scholar 

  7. Mitchell, P. (1961) Nature, 191, 144–148.

    Article  PubMed  CAS  Google Scholar 

  8. Skulachev, V. P. (1988) Membrane Bioenergetics, Springer-Verlag, Berlin.

    Google Scholar 

  9. Kramer, R., and Klingenberg, M. (1980) Biochemistry, 19, 556–560.

    Article  PubMed  CAS  Google Scholar 

  10. Vignais, P. V., Block, M. R., Boulay, F., Brandolin, V., and Lauquin, G. J. M. (1985) in Structure and Properties of Cell. Membrane (Bengha, V., ed.) Vol. 2, CRC Press, Paris, pp. 139–179.

    Google Scholar 

  11. Andreyev, A. Yu., Bondareva, T. O., Dedukhova, V. I., Mokhova, E. N., Skulachev, V. P., Tsofina, L. M., Volkov, N. I., and Vygodina, T. V. (1989) Eur. J. Biochem., 182, 585–592.

    Article  PubMed  Google Scholar 

  12. Skulachev, V. P. (1998) Biochim. Biophys. Acta, 1363, 100–124.

    Article  PubMed  CAS  Google Scholar 

  13. Mokhova, E. N., and Khailova, L. S. (2005) Biochemistry. (Moscow), 70, 159–163.

    Article  CAS  Google Scholar 

  14. Skulachev, V. P. (1991) FEBS Lett., 294, 158–162.

    Article  PubMed  CAS  Google Scholar 

  15. Starkov, A. A., Dedukhova, V. I., and Skulachev, V. P. (1994) FEBS Lett., 355, 305–308.

    Article  PubMed  CAS  Google Scholar 

  16. Starkov, A. A., Bloch, D. A., Chernyak, B. V., Dedukhova, V. I., Mansurova, S. E., Severina, I. I., Simonyan, R. A., Vygodina, T. V., and Skulachev, V. P. (1997) Biochim. Biophys. Acta, 1318, 159–172.

    Article  PubMed  CAS  Google Scholar 

  17. Starkov, A. A. (2006) Chem. Biol. Interact., 161, 57–68.

    Article  PubMed  CAS  Google Scholar 

  18. Brailovskaya, I. V., Kudryavtseva, T. A., Larionov, V. N., Prikhodko, E. A., and Mokhova, E. N. (2007) Doklady. Biokhim. Biofiz., 413, 72–75.

    CAS  Google Scholar 

  19. Akerman, K. E., and Wikstrom, M. K. (1976) FEBS Lett., 68, 191–197.

    Article  PubMed  CAS  Google Scholar 

  20. Sobierajska, K., Fabczak, H., and Fabczak, S. (2006) J. Photochem. Photobiol. B, Biol., 83, 163–171.

    Article  PubMed  CAS  Google Scholar 

  21. Markova, O. V., Mokhova, E. N., and Tarakanova, A. N. (1990) J. Bioenerg. Biomembr., 22, 51–59.

    Article  PubMed  CAS  Google Scholar 

  22. Holcomb, M., Cloud, J. G., Woolsey, J., and Ingermann, R. L. (2004) Comp. Biochem. Physiol., Part A. Mol. Integr. Physiol., 138, 349–354.

    Article  PubMed  CAS  Google Scholar 

  23. Elliott, A. M., and Bak, I. J. (1964) J. Cell Biol., 20, 113–129.

    Article  PubMed  CAS  Google Scholar 

  24. Chernyak, B. V., Izyumov, D. S., Lyamzaev, K. G., Pashkovskaya, A. A., Pletjushkina, O. Y., Antonenko, Y. N., Sakharov, D. V., Wirtz, K. W., and Skulachev, V. P. (2006) Biochim. Biophys. Acta, 1757, 525–534.

    Article  PubMed  CAS  Google Scholar 

  25. Liberman, E. A., Mokhova, E. N., Skulachev, V. P., and Topaly, V. P. (1968) Biofizika, 13, 188–193.

    PubMed  CAS  Google Scholar 

  26. Mitchell, P., and Moyle, J. (1967) Biochem. J., 104, 588–600.

    PubMed  CAS  Google Scholar 

  27. Brustovetsky, N. N., Dedukhova, V. I., Egorova, M. V., Mokhova, E. N., and Skulachev, V. P. (1991) FEBS Lett., 295, 51–54.

    Article  Google Scholar 

  28. Samartsev, V. N., Smirnov, A. V., Zeldi, I. P., Markova, O. V., Mokhova, E. N., and Skulachev, V. P. (1997) Biochim. Biophys. Acta, 1319, 251–257.

    Article  PubMed  CAS  Google Scholar 

  29. Skulachev, V. P. (2003) in Selected Topics in the History of. Biochemistry: Personal Recollections VII (Comprehensive. Biochemistry) (Semenza, G., and Turner, A. J., eds.) Vol. 42, Elsevier Science B. V., pp. 319–410.

  30. Kobayashi, T., and Endoh, H. (2005) FEBS J., 272, 5378–5387.

    Article  PubMed  CAS  Google Scholar 

  31. Lerner, E., Shug, A. L., Elson, C., and Shrago, E. (1972) J. Biol. Chem., 247, 1513–1519.

    PubMed  CAS  Google Scholar 

  32. Panov, A. V., Konstantinov, Y. M., and Lyakhovich, V. V. (1975) J. Bioenerg., 7, 75–85.

    Article  PubMed  CAS  Google Scholar 

  33. Dias, N., Mortara, R. A., and Lima, N. (2003) Toxicol. in. vitro, 17, 357–366.

    PubMed  CAS  Google Scholar 

  34. Prlina, I. S., Gabova, A. V., Raikov, I. B., and Tairbekov, M. G. (1989) Tsitologiya, 31, 829–838.

    CAS  Google Scholar 

  35. Brdiczka, D., Zorov, D. B., and Sheu, S. S. (2006) Biochim. Biophys. Acta, 1762, 148–163.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. N. Mokhova.

Additional information

Published in Russian in Biokhimiya, 2009, Vol. 74, No. 4, pp. 459–465.

Originally published in Biochemistry (Moscow) On-Line Papers in Press, as Manuscript BM08-323, March 1, 2009.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Prikhodko, E.A., Brailovskaya, I.V., Korotkov, S.M. et al. Features of mitochondrial energetics in living unicellular eukaryote Tetrahymena pyriformis. A model for study of mammalian intracellular adaptation. Biochemistry Moscow 74, 371–376 (2009). https://doi.org/10.1134/S0006297909040038

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297909040038

Key words

Navigation