Skip to main content
Log in

Protein aggregation and neurodegeneration: Clues from a yeast model of Huntington’s disease

  • Hypothesis
  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

A number of neurodegenerative diseases are accompanied by the appearance of intracellular protein aggregates. Huntington’s disease (HD) is caused by a mutation in a gene encoding huntingtin. The mutation causes the expansion of the polyglutamine (polyQ) domain and consequently polyQ-containing aggregates accumulate and neurons in the striatum die. The role of the aggregates is still not clear: they may be the cause of cytotoxicity or a manifestation of the cellular attempt to remove the misfolded proteins. There is accumulating evidence that the main cause of HD is the interaction of the mutated huntingtin with other polyQ-containing proteins and molecular chaperones and most studies based on a yeast model of HD support this point of view. Data obtained using yeasts suggest pathological consequences of polyQ-proteasomal interaction: proteasomal overload by polyQs may interfere with functions of the cell cycle-regulating proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

APC:

anaphase-promoting complex

HD:

Huntington’s disease

polyQ:

polyglutamine

References

  1. Taylor, J. P., Hardy, J., and Fischbeck, K. N. (2002) Science, 296, 1991–1995.

    Article  PubMed  CAS  Google Scholar 

  2. The Huntington’s Disease Collaborative Research Group (1993) Cell, 72, 971–983.

    Article  Google Scholar 

  3. Faber, P. W., Barnes, G. T., Srinidhi, J., Chen, J., Gusella, J. F., and MacDonald, M. E. (1998) Hum Mol Genet., 7, 1463–1474.

    Article  PubMed  CAS  Google Scholar 

  4. Andrade, M. A., and Bork, P. (1995) Nat Genet., 11, 115–116.

    Article  PubMed  CAS  Google Scholar 

  5. Wellington, C. L., Ellerby, L. M., Hackam, A. S., Margolis, R. L., Trifiro, M. A., Singaraja, R., McCutcheon, K., Salvesen, G. S., Propp, S. S., Bromm, M., Rowland, K. J., Zhang, T., Rasper, D., Roy, S., Thornberry, N., Pinsky, L., Kakizuka, A., Ross, C. A., Nicholson, D. W., Bredesen, D. E., and Hayden, M. R. (1998) J. Biol. Chem., 273, 9158–9167.

    Article  PubMed  CAS  Google Scholar 

  6. Gutekunst, C. A., Levey, A. I., Heilman, C. J., Whaley, W. L., Yi, H., Nash, N. R., Rees, H. D., Madden, J. J., and Hersch, S. M. (1995) Proc. Natl. Acad. Sci. USA, 92, 8710–8714.

    Article  PubMed  CAS  Google Scholar 

  7. DiFiglia, M., Sapp, E., Chase, K. O., Davies, S. W., Bates, G. P., Vonsattel, J. P., and Aronin, N. (1997) Science, 277, 1990–1993.

    Article  PubMed  CAS  Google Scholar 

  8. Trottier, Y., Devys, D., Imbert, G., Saudou, F., An, I., Lutz, Y., Weber, C., Agid, Y., Hirsch, E. C., and Mandel, J. L. (1995) Nat. Genet., 10, 104–110.

    Article  PubMed  CAS  Google Scholar 

  9. Velier, J., Kim, M., Schwarz, C., Kim, T. W., Sapp, E., Chase, K., Aronin, N., and DiFiglia, M. (1998) Exp. Neurol., 152, 34–40.

    Article  PubMed  CAS  Google Scholar 

  10. Harjes, P., and Wanker, E. E. (2003) Trends Biochem. Sci., 28, 425–433.

    Article  PubMed  CAS  Google Scholar 

  11. Li, S. H., and Li, X. J. (2004) Trends Genet., 20, 146–154.

    Article  PubMed  Google Scholar 

  12. Gauthier, L. R., Charrin, B. C., Borrell-Pages, M., Dompierre, J. P., Rangone, H., Cordelieres, F. P., de Mey, J., MacDonald, M. E., Lessmann, V., Humbert, S., and Saudou, F. (2004) Cell, 118, 127–138.

    Article  PubMed  CAS  Google Scholar 

  13. Rigamonti, D., Bauer, J. H., de Fraja, C., Conti, L., Sipione, S., Sciorati, C., Clementi, E., Hackam, A., Hayden, M. R., Li, Y., Cooper, J. K., Ross, C. A., Govoni, S., Vincenz, C., and Cattaneo, E. (2000) J. Neurosci., 20, 3705–3713.

    PubMed  CAS  Google Scholar 

  14. Hackam, A. S., Yassa, A. S., Singaraja, R., Metzler, M., Gutekunst, C. A., Gan, L., Warby, S., Wellington, C. L., Vaillancourt, J., Chen, N., Gervais, F. G., Raymond, L., Nicholson, D. W., and Hayden, M. R. (2000) J. Biol. Chem., 275, 41299–41308.

    Article  PubMed  CAS  Google Scholar 

  15. Snell, R. G., MacMillan, J. C., Cheadle, J. P., Fenton, I., Lazarou, L. P., Davies, P., MacDonald, M. E., Gusella, J. F., Harper, P. S., and Shaw, D. J. (1993) Nat. Genet., 4, 393–397.

    Article  PubMed  CAS  Google Scholar 

  16. Rubinsztein, D. C., Leggo, J., Coles, R., Almqvist, E., Biancalana, V., Cassiman, J. J., Chotai, K., Connarty, M., Crauford, D., Curtis, A., Curtis, D., Davidson, M. J., Differ, A. M., Dode, C., Dodge, A., Frontali, M., Ranen, N. G., Stine, O. C., Sherr, M., Abbott, M. H., Franz, M. L., Graham, C. A., Harper, P. S., Hedreen, J. C., Hayden, M. R., et al. (1996) Am. J. Hum. Genet., 59, 16–22.

    PubMed  CAS  Google Scholar 

  17. Outeiro, T. F., and Giorgini, F. (2006) Biotechnol. J., 1, 258–269.

    Article  PubMed  CAS  Google Scholar 

  18. Vishnevskaia, A. B., Kushnirov, V. V., and Ter-Avanesian, M. D. (2007) Mol. Biol. (Moscow), 41, 346–354.

    CAS  Google Scholar 

  19. Meriin, A. B., Zhang, X., He, X., Newnam, G. P., Chernoff, Y. O., and Sherman, M. Y. (2002) J. Cell Biol., 157, 997–1004.

    Article  PubMed  CAS  Google Scholar 

  20. Zhang, X., Smith, D. L., Meriin, A. B., Engemann, S., Russel, D. E., Roark, M., Washington, S. L., Maxwell, M. M., Marsh, J. L., Thompson, L. M., Wanker, E. E., Young, A. B., Housman, D. E., Bates, G. P., Sherman, M. Y., and Kazantsev, A. G. (2005) Proc. Natl. Acad. Sci. USA, 102, 892–897.

    Article  PubMed  CAS  Google Scholar 

  21. Bodner, R. A., Outeiro, T. F., Altmann, S., Maxwell, M. M., Cho, S. H., Hyman, B. T., McLean, P. J., Young, A. B., Housman, D. E., and Kazantsev, A. G. (2006) Proc. Natl. Acad. Sci. USA, 103, 4246–4251.

    Article  PubMed  CAS  Google Scholar 

  22. Arrasate, M., Mitra, S., Schweitzer, E. S., Segal, M. R., and Finkbeiner, S. (2004) Nature, 431, 805–810.

    Article  PubMed  CAS  Google Scholar 

  23. Ross, C. A., and Poirier, M. A. (2004) Nat. Med., 10, S10–S17.

    Article  PubMed  Google Scholar 

  24. Van Roon-Mom, W. M., Reid, S. J., Jones, A. L., MacDonald, M. E., Faull, R. L., and Snell, R. G. (2002) Brain Res. Mol. Brain Res., 109, 1–10.

    PubMed  Google Scholar 

  25. Stevanin, G., Fujigasaki, H., Lebre, A. S., Camuzat, A., Jeannequin, C., Dode, C., Takahashi, J., San, C., Bellance, R., Brice, A., and Durr, A. (2003) Brain, 126, 1599–1603.

    Article  PubMed  Google Scholar 

  26. Schaffar, G., Breuer, P., Boteva, R., Behrends, C., Tzvetkov, N., Strippel, N., Sakahira, H., Siegers, K., Hayer-Hartl, M., and Hartl, F. U. (2004) Mol. Cell., 15, 95–105.

    Article  PubMed  CAS  Google Scholar 

  27. Sokolov, S., Pozniakovsky, A., Bocharova, N., Knorre, D., and Severin, F. (2006) Biochim. Biophys. Acta, 1757, 660–666.

    Article  PubMed  CAS  Google Scholar 

  28. Trushina, E., Singh, R. D., Dyer, R. B., Cao, S., Shah, V. H., Parton, R. G., Pagano, R. E., and McMurray, C. T. (2006) Hum. Mol. Genet., 15, 3578–3591.

    Article  PubMed  CAS  Google Scholar 

  29. Hyun, T. S., Li, L., Oravecz-Wilson, K. I., Bradley, S. V., Provot, M. M., Munaco, A. J., Mizukami, I. F., Sun, H., and Ross, T. S. (2004) Mol. Cell Biol., 24, 4329–4340.

    Article  PubMed  CAS  Google Scholar 

  30. Liu, C. W., Giasson, B. I., Lewis, K. A., Lee, V. M., Demartino, G. N., and Thomas, P. J. (2005) J. Biol. Chem., 280, 22670–22678.

    Article  PubMed  CAS  Google Scholar 

  31. Bossy-Wetzel, E., Schwarzenbacher, R., and Lipton, S. A. (2004) Nat. Med., 10, S2–S9.

    Article  PubMed  Google Scholar 

  32. Jana, N. R., Zemskov, E. A., Wang, Gh., and Nukina, N. (2001) Hum. Mol. Genet., 10, 1049–1059.

    Article  PubMed  CAS  Google Scholar 

  33. Castro, A., Bernis, C., Vigneron, S., Labbe, J. C., and Lorca, T. (2005) Oncogene, 24, 314–325.

    Article  PubMed  CAS  Google Scholar 

  34. Baker, D. J., Dawlaty, M. M., Galardy, P., and van Deursen, J. M. (2007) Cell Mol. Life Sci., 64, 589–600.

    Article  PubMed  CAS  Google Scholar 

  35. Juang, Y. L., Huang, J., Peters, J. M., McLaughlin, M. E., Tai, C. Y., and Pellman, D. (1997) Science, 275, 1311–1314.

    Article  PubMed  CAS  Google Scholar 

  36. Kryndushkin, D. S., Alexandrov, I. M., Ter-Avanesyan, M. D., and Kushnirov, V. V. (2003) J. Biol. Chem., 278, 49636–49643.

    Article  PubMed  CAS  Google Scholar 

  37. Taxis, C., Hitt, R., Park, S. H., Deak, P. M., Kostova, Z., and Wolf, D. H. (2003) J. Biol. Chem., 278, 35903–35913.

    Article  PubMed  CAS  Google Scholar 

  38. Aulia, S., and Tang, B. L. (2006) Biochem. Biophys. Res. Commun., 339, 1–6.

    Article  PubMed  CAS  Google Scholar 

  39. Lasorella, A., Stegmuller, J., Guardavaccaro, D., Liu, G., Carro, M. S., Rothschild, G., de la Torre-Ubieta, L., Pagano, M., Bonni, A., and Iavarone, A. (2006) Nature, 442, 471–474.

    Article  PubMed  CAS  Google Scholar 

  40. Stegmuller, J., Konishi, Y., Huynh, M. A., Yuan, Z., Dibacco, S., and Bonni, A. (2006) Neuron, 50, 389–400.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Severin.

Additional information

Published in Russian in Biokhimiya, 2009, Vol. 74, No. 2, pp. 284–288.

Originally published in Biochemistry (Moscow) On-Line Papers in Press, as Manuscript BM08-184, December 14, 2008.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bocharova, N., Chave-Cox, R., Sokolov, S. et al. Protein aggregation and neurodegeneration: Clues from a yeast model of Huntington’s disease. Biochemistry Moscow 74, 231–234 (2009). https://doi.org/10.1134/S0006297909020163

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297909020163

Key words

Navigation