Abstract
Synthesis of cationic plastoquinone derivatives (SkQs) containing positively charged phosphonium or rhodamine moieties connected to plastoquinone by decane or pentane linkers is described. It is shown that SkQs (i) easily penetrate through planar, mitochondrial, and outer cell membranes, (ii) at low (nanomolar) concentrations, posses strong antioxidant activity in aqueous solution, BLM, lipid micelles, liposomes, isolated mitochondria, and cells, (iii) at higher (micromolar) concentrations, show pronounced prooxidant activity, the “window” between anti- and prooxidant concentrations being very much larger than for MitoQ, a cationic ubiquinone derivative showing very much lower antioxidant activity and higher prooxidant activity, (iv) are reduced by the respiratory chain to SkQH2, the rate of oxidation of SkQH2 being lower than the rate of SkQ reduction, and (v) prevent oxidation of mitochondrial cardiolipin by OH·. In HeLa cells and human fibroblasts, SkQs operate as powerful inhibitors of the ROS-induced apoptosis and necrosis. For the two most active SkQs, namely SkQ1 and SkQR1, C 1/2 values for inhibition of the H2O2-induced apoptosis in fibroblasts appear to be as low as 1·10−11 and 8·10−13 M, respectively. SkQR1, a fluorescent representative of the SkQ family, specifically stains a single type of organelles in the living cell, i.e. energized mitochondria. Such specificity is explained by the fact that it is the mitochondrial matrix that is the only negatively-charged compartment inside the cell. Assuming that the Δψ values on the outer cell and inner mitochondrial membranes are about 60 and 180 mV, respectively, and taking into account distribution coefficient of SkQ1 between lipid and water (about 13,000: 1), the SkQ1 concentration in the inner leaflet of the inner mitochondrial membrane should be 1.3·108 times higher than in the extracellular space. This explains the very high efficiency of such compounds in experiments on cell cultures. It is concluded that SkQs are rechargeable, mitochondria-targeted antioxidants of very high efficiency and specificity. Therefore, they might be used to effectively prevent ROS-induced oxidation of lipids and proteins in the inner mitochondrial membrane in vivo.
This is a preview of subscription content, access via your institution.
Abbreviations
- Δψ:
-
transmembrane electric potential difference
- AAPH:
-
2,2′-azobis(2-amidinopropane) dihydrochloride
- BLM:
-
bilayer planar phospholipid membrane
- BSA:
-
bovine serum albumin
- CCCP:
-
carbonyl cyanide m-chlorophenylhydrazone
- CM-DCF-DA:
-
5-(-6)-chloromethyl-2′,7′-dichlorodihydrofluorescein diacetate
- C12TPP:
-
dodecyltriphenylphosphonium
- DMQ:
-
demethoxy-derivative of CoQ0 lacking one of the methoxy groups
- DPQ:
-
decylplastoquinone
- FCCP:
-
carbonyl cyanide p-trifluo-romethoxyphenylhydrazone
- MDA:
-
malondialdehyde
- MitoQ:
-
10-(6′-ubiquinonyl) decyltriphenylphosphonium
- NAC:
-
N-acetyl cysteine
- PQ:
-
plastoquinone
- ROS:
-
reactive oxygen species
- SF6846:
-
3,5-di(tert)butyl-4-hydroxybenzylidene malononitrile
- SkQ:
-
cationic derivative of plastoquinone or methyl plastoquinone
- SkQ1:
-
10-(6′-plastoquinonyl) decyltriphenylphosphonium
- SkQ2:
-
10-(6′-plastoquinonyl) decylcarnitine
- SkQ2M:
-
10-(6t′-plastoquinonyl) decylmethylcarnitine
- SkQ3:
-
10-(6′-methylplasto-quinonyl) decyltriphenylphosphonium
- SkQ4:
-
10-(6′-plastoquinonyl) decyltributylammonium
- SkQ5:
-
5-(6′-plastoquinonyl) amyltriphenylphosphonium
- SkQR1:
-
10-(6′-plastoquinonyl) decylrhodamine 19
- TMRE:
-
tetramethylrhodamine ethyl ester
- TPB:
-
tetraphenylborate
- TPP:
-
tetraphenylphosphonium
References
Skulachev, V. P. (2005) IUBMB-Life, 57, 305–310.
Liberman, E. A., Topali, V. P., Tsofina, L. M., Jasaitis, A. A., and Skulachev, V. P. (1969) Nature, 222, 1076–1078.
Grinius, L. L., Jasaitis, A. A., Kadziauskas, Yu. L., Liberman, E. A., Skulachev, V. P., Topali, V. P., Tsofina, L. M., and Vladimirova. M. A. (1970) Biochim. Biophys. Acta, 216, 1–12.
Bakeeva, L. E., Grinius, L. L., Jasaitis, A. A., Kuliene, V. V., Levitsky, D. O., Liberman, E. A., Severina, I. I., and Skulachev, V. P. (1970) Biochim. Biophys. Acta, 216, 12–21.
Isaev, I. I., Liberman, E. A., Samuilov, V. D., Skulachev, V. P., and Tsofina, L. M. (1970) Biochim. Biophys. Acta, 216, 22–29.
Liberman, E. A., and Skulachev. V. P. (1970) Biochim. Biophys. Acta, 216, 30–42.
Skulachev, V. P. (1988) Membrane Bioenergetics, Springer-Verlag, Berlin-Heidelberg.
Green, D. (1974) Biochim. Biophys. Acta, 346, 27–78.
Severin, S. E., Skulachev, V. P., and Yaguzhinsky, L. S. (1970) Biokhimiya, 35, 1250–1257.
Levitsky, D. O., and Skulachev, V. P. (1972) Biochim. Biophys. Acta, 275, 33–50.
Burns, R. J., Smith, R. A. J., and Murphy, M. P. (1995) Arch. Biochem. Biophys., 322, 60–68.
Smith, R. A., Porteous, C. M., Coulter, C. V., and Murphy, M. P. (1999) Eur. J. Biochem., 263, 709–716.
Kelso, G. F., Porteous, C. M., Coulter, C. V., Hughes, G., Porteous, W. K., Ledgerwood, E. C., Smith, R. A., and Murphy, M. P. (2001) J. Biol. Chem., 276, 4588–4596.
James, A. M., Cocheme, H. M., Smith, R. A., and Murphy, M. P. (2005) J. Biol. Chem., 280, 21295–21312.
Kelso, G. F., Porteous, C. M., Hughes, G., Ledgerwood, E. C., Gane, A. M., Smith, R. A., and Murphy, M. P. (2002) Ann. NY Acad. Sci., 959, 263–274.
Saretzki, G., Murphy, M. P., and von Zglinicki, T. (2003) Aging Cell, 2, 141–143.
Jauslin, M. L., Meier, T., Smith, R. A., and Murphy, M. P. (2003) FASEB J., 17, 1972–1974.
Murphy, M. P., and Smith, R. A. (2007) Annu. Rev. Pharmacol. Toxicol., 47, 629–656.
O’Malley, Y., Fink, B. D., Ross, N. C., Prisinzano, T. E., and Sivitz, W. I. (2006) J. Biol. Chem., 281, 39766–39775.
Doughan, A. K., and Dikalov, S. I. (2007) Antioxid. Redox Signal, 9, 1825–1836.
Vlachantoni, D., Tulloch, B., Taylor, R. W., Turnbull, D. M., Murphy, M. O., and Wright, A. F. (2006) Invest. Ophthalmol. Vis. Sci., E-5773.
Tauskela, J. S. (2007) IDrugs, 10, 399–412.
Kruk, J., Jemiola-Rzeminska, M., and Strzalka, K. (1997) Chem. Phys. Lipids, 87, 73–80.
Loshadkin, D., Roginsky, V., and Pliss, E. (2002) Int. J. Chem. Kinetics, 34, 162–171.
Roginsky, V., Barsukova, T., Loshadkin, D., and Pliss, E. (2003) Chem. Phys. Lipids, 125, 49–58.
Skulachev, V. P. (2007) Biochemistry (Moscow), 72, 1385–1396.
Severina, I. I. (1982) Biochim. Biophys. Acta, 681, 311–317.
Palmer, J. W., Tandler, B., and Hoppel, C. L. (1977) J. Biol. Chem., 252, 8731–8739.
Grieff, D., and Meyer, S. (1961) Biochim. Biophys. Acta, 50, 232–242.
Yagi, K., Nishigaki, I., and Ohama, H. (1968) Vitamins, 37, 105–112.
Jentzsch, A. M., Bachmann, H., Furst, P., and Biesalski, H. K. (1996) Free Rad. Biol. Med., 20, 251–256.
Akerman, K. E. O., and Wikstrom, M. K. F. (1976) FEBS Lett., 68, 191–197.
Shchepina, L. A., Pletjushkina, O. Yu., Avetisyan, A. V., Bakeeva, L. E., Fetisova, E. K., Izyumov, D. S., Saprunova, V. B., Vyssokikh, M. Yu., Chernyak, B. V., and Skulachev, V. P. (2002) Oncogene, 21, 8149–8157.
Lissi, E., Pascual, C., and del Castillo, M. D. (1992) Free Rad. Res. Commun., 17, 299–311.
Krasowska, A., Rosiak, D., Szkapiak, K., and Lukaszewicz, M. (2000) Curr. Top. Biophys., 24, 89–95.
Naguib, Y. M. (1998) Analyt. Biochem., 265, 290–298.
Drummen, G. P., van Liebergen, L. C., Op den Kamp, J. A., and Post, J. A. (2002) Free Rad. Biol. Med., 33, 473–490.
Sobko, A. A., Vigasina, M. A., Rokitskaya, T. I., Kotova, E. A., Zakharov, S. D., Cramer, W. A., and Antonenko, Y. M. (2004) J. Membr. Biol., 199, 51–62.
Von Jagow, G., and Bohrer, C. (1975) Biochim. Biophys. Acta, 387, 409–424.
Weiss, H., and Wingfield, P. (1979) Eur. J. Biochem., 99, 151–160.
Chen, M., Liu, B.-L., Gu, L.-Q., and Zhu, Q.-S. (1986) Biochim. Biophys. Acta, 851, 469–474.
Gu, L.-Q., Yu, L., and Yu, C.-A. (1990) Biochim. Biophys. Acta, 1015, 482–492.
Gohil, V. M., Gvozdenovic-Jeremic, J., Schlame, M., and Greenberg, M. L. (2005) Analyt. Biochem., 343, 350–352.
Chernyak, B. V., Izyumov, D. S., Lyamzaev, K. G., Pashkovskaya, A. A., Pletjushkina, O. Y., Antonenko, Y. N., Sakharov, D. V., Wirtz, K. W., and Skulachev, V. P. (2006) Biochim. Biophys. Acta, 1757, 525–534.
Zorov, D. B., Filburn, C. R., Klotz, L. O., Zweier, J. L., and Sollott, S. J. (2000) J. Exp. Med., 192, 1001–1014.
Schulz, J. B., Lindenau, J., Seyfried, J., and Dichgans, J. (2000) Eur. J. Biochem., 267, 4904–4911.
Skulachev, V. P., Bakeeva, L. E., Chernyak, B. V., Domnina, L. V., Minin, A. A., Pletjushkina, O. Yu., Saprunova, V. B., Skulachev, I. B., Tsyplenkova, V. G., Vasiliev, J. M., Yaguzhinsky, L. S., and Zorov, D. B. (2004) Mol. Cell. Biochem., 256/257, 341–358.
Amchenkova, A. A., Bakeeva, L. E., Chentsov, Yu. S., Skulachev, V. P., and Zorov, D. B. (1988) J. Cell Biol., 107, 481–495.
Bolton, J. L., Trush, M. A., Penning, T. M., Dryhurst, G., and Monks, T. J. (2000) Chem. Res. Toxicol., 13, 135–160.
Antonenko, Y. N., Roginsky, V. A., Pashkovskaya, A. A., Rokitskaya, T. I., Kotova, E. A., Zaspa, A. A., Chernyak, B. V., and Skulachev, V. P. (2008) J. Membr. Biol., 222, 141–149.
Tyurin, V. A., Tyurina, Y. Y., Osipov, A. N., Belikova, N. A., Basova, L. V., Kapralov, A. A., Bayir, H., and Kagan, V. E. (2007) Cell Death Differ., 14, 872–875.
Basova, L. V., Kurnikov, I. V., Wang, L., Ritov, V. B., Belikova, N. A., Vlasova, I. I., Pacheco, A. A., Winnica, D. E., Peterson, J., Bayir, H., Waldeck, D. H., and Kagan, V. E. (2007) Biochemistry, 46, 3423–3434.
Choi, S. Y., Gonzalvez, F., Jenkins, G. M., Slomianny, C., Chretien, D., Arnoult, D., Petit, P. X., and Frohman, M. A. (2007) Cell Death Differ., 14, 597–606.
Lee, S., Jeong, S. Y., Lim, W. C., Kim, S., Park, Y. Y., Sun, X., Youle, R. J., and Cho, H. (2007) J. Biol. Chem., 282, 22977–22983.
Chen, H., McCaffery, J. M., and Chan, D. C. (2007) Cell, 130, 548–562.
Scheckhuber, C. Q., Erjavec, N., Tinazli, A., Hamann, A., Nystrom, T., and Osiewacz, H. D. (2007) Nat. Cell Biol., 9, 99–105.
Bakeeva, L. E., Barskov, I. V., Egorov, M. V., Isaev, N. K., Kapelko, V. I., Kazachenko, A. V., Kirpatovsky, V. I., Kozlovsky, S. V., Lakomkin, V. L., Levina, S. V., Pisarenko, O. I., Plotnikov, E. Y., Saprunova, V. B., Serebryakova, L. I., Skulachev, M. V., Stelmashook, E. V., Studneva, I. M., Tskitishvili, O. V., Vasil’eva, A. K., Victorov, I. V., Zorov, D. B., and Skulachev, V. P. (2008) Biochemistry (Moscow), 73, 1288–1299.
Agapova, L. S., Chernyak, B. V., Domnina, L. V., Dugina, V. B., Efimenko, A. Yu., Fetisova, E. K., Ivanova, O. Yu., Kalinina, N. I., Khromova, N. V., Kopnin, B. P., Kopnin, P. B., Korotetskaya, M. V., Lichinitser, M. R., Lukashov, A. L., Pletjushkina, O. Yu., Popova, E. N., Skulachev, M. V., Shagieva, G. S., Stepanova, E. V., Titova, E. V., Tkachuk, V. A., Vasiliev, J. M., and Skulachev, V. P. (2008) Biochemistry (Moscow), 73, 1300–1316.
Neroev, V. V., Archipova, M. M., Bakeeva, L. E., Fursova, A. Zh., Grigorian, E. N., Grishanova, A. Yu., Iomdina, E. N., Ivashchenko, Zh. N., Katargina, L. A., Khoroshilova-Maslova, I. P., Kilina, O. V., Kolosova, N. G., Kopenkin, E. P., Korshunov, S. S., Kovaleva, N. A., Novikova, Yu. P., Philippov, P. P., Pilipenko, D. I., Robustova, O. V., Saprunova, V. B., Senin, I. I., Skulachev, M. V., Sotnikova, L. F., Stefanova, N. A., Tikhomirova, N. K., Tsapenko, I. B., Shchipanova, A. I., Zinovkin, R. A., and Skulachev, V. P. (2008) Biochemistry (Moscow), 73, 1317–1328.
Anisimov, V. N., Bakeeva, L. E., Egormin, P. A., Filenko, O. F., Isakova, E. F., Manskikh, V. N., Mikhelson, V. M., Panteleeva, A. A., Pasyukova, E. G., Pilipenko, D. I., Piskunova, T. S., Popovich, I. G., Roshchina, N. V., Rybina, O. Yu., Samoylova, T. A., Saprunova, V. B., Semenchenko, A. V., Skulachev, M. V., Spivak, I. M., Tsybul’ko, E. A., Tyndyk, M. L., Vyssokikh, M. Yu., Yurova, M. N., Zabezhinsky, M. A., and Skulachev, V. P. (2008) Biochemistry (Moscow), 73, 1329–1342.
References
Severina, I. I., and Skulachev, V. P. (1984) FEBS Lett., 165, 67–71.
Liu, X., Jiangs, N., Hughes, B., Bigras, E., Shoubrudge, E., and Hekimi, S. (2005) Genes Dev., 19, 2424–2434.
Arnold, R. T., and Zaugg, H. E. (1941) J. Am. Chem. Soc., 63, 1317–1320.
Gu, L. Q., and Yu, C. A. (1983) Biochem. Biophys. Res. Commun., 113, 477–482.
Jacobsen, N., and Torsell, K. (1973) Acta Chem. Scand., 27, 3211–3216.
Kelso, G. F., Porteous, C. M., Coulter, C. V., Hughes, G., Porteous, W. K., Ledgerwoodj, E. C., Smith, R. A. J., and Murphy, M. P. (2001) J. Biol. Chem., 276, 4588–4596.
Hockings, P. D., and Rogers, P. J. (1996) Biochim. Biophys. Acta, 1282, 101–106.
Pinton, P., Rimessi, A., Marchi, S., Orsini, F., Migliaccio, E., Giorgio, M., Contursi, C., Minucci, S., Mantovani, F., Wieckowski, M. R., del Sal, G., Pelicci, P., and Rizzuto, R. (2007) Science, 315, 659–663.
Markova, O. V., Evstafieva, A. G., Mansurova, S. E., Moussine, S. S., Palamarchuk, L. A., Pereverzev, M. O., Vartapetian, A. B., and Skulachev, V. P. (2003) Biochim. Biophys. Acta, 1557, 109–117.
Author information
Authors and Affiliations
Corresponding author
Additional information
Published in Russian in Biokhimiya, 2008, Vol. 73, No. 12, pp. 1589–1606.
This and the following four articles were written by the request of the Editorial Board of Biochemistry (Moscow).
Electronic supplementary material
Rights and permissions
About this article
Cite this article
Antonenko, Y.N., Avetisyan, A.V., Bakeeva, L.E. et al. Mitochondria-targeted plastoquinone derivatives as tools to interrupt execution of the aging program. 1. Cationic plastoquinone derivatives: Synthesis and in vitro studies. Biochemistry Moscow 73, 1273–1287 (2008). https://doi.org/10.1134/S0006297908120018
Received:
Revised:
Published:
Issue Date:
DOI: https://doi.org/10.1134/S0006297908120018
Key words
- SkQ1
- penetrating cations
- plastoquinone
- antioxidants
- mitochondria
- apoptosis