Skip to main content
Log in

Mitochondrial matrix fragmentation as a protection mechanism of yeast Saccharomyces cerevisiae

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

It was shown that separate fragments of the inner mitochondrial compartment (mitoplasts) can exist under a single non-fragmented outer membrane. Here we asked whether fragmentation of the inner mitochondria could prevent rupturing of the outer membrane and release of pro-apoptotic molecules from the mitochondrial intermembrane space into the cytoplasm during mitochondrial swelling. First, we showed that in Saccharomyces cerevisiae yeast addition of amiodarone causes formation of electrically separate compartments within mitochondrial filaments. Moreover, amiodarone treatment of Δysp2 mutant produced a higher proportion of cells with electrically discontinuous mitochondria than in the wild type, which correlated with the survival of cells. We confirmed the existence of separated mitoplasts under a single outer membrane using electron microscopy. Mitochondria with fragmented matrixes were also detected in cells of the stationary phase. Our data suggest that such fragmentation acts as a cellular protective mechanism against stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

FCCP:

carbonyl cyanide p-(trifluoromethoxy)phenylhydrazone

GFP:

green fluorescent protein

TMR:

tetramethyl rhodamine

References

  1. Amchenkova, A. A., Bakeeva, L. E., Chentsov, Y. S., Skulachev, V. P., and Zorov, D. B. (1988) J. Cell Biol., 107, 481–495.

    Article  PubMed  CAS  Google Scholar 

  2. Skulachev, V. P., Bakeeva, L. E., Chernyak, B. V., Domnina, L. V., Minin, A. A., Pletjushkina, O. Y., Saprunova, V. B., Skulachev, I. V., Tsyplenkova, V. G., Vasiliev, J. M., Yaguzhinsky, L. S., and Zorov, D. B. (2004) Mol. Cell Biochem., 256/257, 341–358.

    Article  CAS  Google Scholar 

  3. Madeo, F., Herker, E., Wissing, S., Jungwirth, H., Eisenberg, T., and Frohlich, K. U. (2004) Curr. Opin. Microbiol., 7, 655–660.

    Article  PubMed  CAS  Google Scholar 

  4. Gordeeva, A. V., Labas, Y. A., and Zvyagilskaya, R. A. (2004) Biochemistry (Moscow), 69, 1055–1066.

    Article  CAS  Google Scholar 

  5. Kaasik, A., Safiulina, D., Zharkovsky, A., and Veksler, V. (2007) Am. J. Physiol. Cell Physiol., 292, C157–C163.

    Article  PubMed  CAS  Google Scholar 

  6. Skulachev, V. P. (2002) Ann. N. Y. Acad. Sci., 959, 214–237.

    Article  PubMed  CAS  Google Scholar 

  7. Sherman, F. (2002) Meth. Enzymol., 350, 3–41.

    Article  PubMed  CAS  Google Scholar 

  8. Tolic-Norrelykke, I. M., Sacconi, L., Stringari, C., Raabe, I., and Pavone, F. S. (2005) Curr. Biol., 15, 1212–1216.

    Article  PubMed  CAS  Google Scholar 

  9. Yang, H., Ren, Q., and Zhang, Z. (2006) FEMS Yeast Res., 6, 1254–1263.

    Article  PubMed  CAS  Google Scholar 

  10. Westermann, B., and Neupert, W. (2000) Yeast, 16, 1421–1427.

    Article  PubMed  CAS  Google Scholar 

  11. Pozniakovsky, A. I., Knorre, D. A., Markova, O. V., Hyman, A. A., Skulachev, V. P., and Severin, F. F. (2005) J. Cell Biol., 168, 257–269.

    Article  PubMed  CAS  Google Scholar 

  12. Sokolov, S., Knorre, D., Smirnova, E., Markova, O., Pozniakovsky, A., Skulachev, V., and Severin, F. (2006) Biochim. Biophys. Acta, 1757, 1366–1370.

    Article  PubMed  CAS  Google Scholar 

  13. Lewandowska, A., Gierszewska, M., Marszalek, J., and Liberek, K. (2006) Biochim. Biophys. Acta, 1763, 141–151.

    Article  PubMed  CAS  Google Scholar 

  14. Vieira, H. L., Boya, P., Cohen, I., El Hamel, C., Haouzi, D., Druillenec, S., Belzacq, A. S., Brenner, C., Roques, B., and Kroemer, G. (2002) Oncogene, 21, 1963–1977.

    Article  PubMed  CAS  Google Scholar 

  15. Breckenridge, D. G., Germain, M., Mathai, J. P., Nguyen, M., and Shore, G. C. (2003) Oncogene, 22, 8608–8618.

    Article  PubMed  CAS  Google Scholar 

  16. Fannjiang, Y., Cheng, W. C., Lee, S. J., Qi, B., Pevsner, J., McCaffery, J. M., Hill, R. B., Basanez, G., and Hardwick, J. M. (2004) Genes Dev., 18, 2785–2797.

    Article  PubMed  CAS  Google Scholar 

  17. Frank, S., Gaume, B., Bergmann-Leitner, E. S., Leitner, W. W., Robert, E. G., Catez, F., Smith, C. L., and Youle, R. J. (2001) Dev. Cell, 1, 515–525.

    Article  PubMed  CAS  Google Scholar 

  18. Scheckhuber, C. Q., Erjavec, N., Tinazli, A., Hamann, A., Nystrom, T., and Osiewacz, H. D. (2007) Nat. Cell Biol., 9, 99–105.

    Article  PubMed  CAS  Google Scholar 

  19. Sun, M. G., Williams, J., Munoz-Pinedo, C., Perkins, G. A., Brown, J. M., Ellisman, M. H., Green, D. R., and Frey, T. G. (2007) Nat. Cell Biol., 9, 1057–1072.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. F. Severin.

Additional information

Published in Russian in Biokhimiya, 2008, Vol. 73, No. 11, pp. 1561–1568.

Originally published in Biochemistry (Moscow) On-Line Papers in Press, as Manuscript BM08-057, October 12, 2008.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Knorre, D.A., Ojovan, S.M., Saprunova, V.B. et al. Mitochondrial matrix fragmentation as a protection mechanism of yeast Saccharomyces cerevisiae . Biochemistry Moscow 73, 1254–1259 (2008). https://doi.org/10.1134/S0006297908110126

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297908110126

Key words

Navigation