Skip to main content
Log in

DNA polymerases β and λ as potential participants of TLS during genomic DNA replication on the lagging strand

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

The main strategy used by pro-and eukaryotic cells for replication of damaged DNA is translesion synthesis (TLS). Here, we investigate the TLS process catalyzed by DNA polymerases β and λ on DNA substrates using mono-or dinucleotide gaps opposite damage located in the template strand. An analog of a natural apurinic/apyrimidinic site, the 3-hydroxy-2-hydroxymetylthetrahydrofuran residue (THF), was used as damage. DNA was synthesized in the presence of either Mg2+ or Mn2+. DNA polymerases β and λ were able to catalyze DNA synthesis across THF only in the presence of Mn2+. Moreover, strand displacement synthesis was not observed. The primer was elongated by only one nucleotide. Another unusual aspect of the synthesis is that dTTP could not serve as a substrate in all cases. dATP was a preferential substrate for synthesis catalyzed by DNA polymerase β. As for DNA polymerase λ, dGMP was the only incorporated nucleotide out of four investigated. Modified on heterocyclic base photoreactive analogs of dCTP and dUTP showed substrate specificity for DNA polymerase β. In contrast, the dCTP analog modified on the exocyclic amino group was a substrate for DNA polymerase λ. We also observed that human replication protein A inhibited polymerase incorporation by both DNA polymerases β and λ on DNA templates containing damage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AP-site:

apurinic/apyrimidinic site

dRP:

deoxyribose phosphate

hRPA:

human replication protein A

THF:

3-hydroxy-2-hydroxymethyltetrahydrofuran

TLS:

translesion synthesis

References

  1. Goodman, M. F. (2002) Annu. Rev. Biochem., 71, 17–50.

    Article  PubMed  CAS  Google Scholar 

  2. Efrati, E., Tocco, G., Eritja, R., Wilson, S. H., and Goodman, M. F. (1997) J. Biol. Chem., 272, 2559–2569.

    Article  PubMed  CAS  Google Scholar 

  3. Ramadan, K., Shevelev, I. V., Maga, G., and Hubscher, U. (2002) J. Biol. Chem., 277, 18454–18458.

    Article  PubMed  CAS  Google Scholar 

  4. Wang, T. S. (1991) Annu. Rev. Biochem., 60, 513–552.

    Article  PubMed  CAS  Google Scholar 

  5. Sobol, R. W., Horton, J. K., Kuhn, R., Gu, H., Singhal, R. K., Prasad, R., Rajewsky, K., and Wilson, S. H. (1996) Nature, 379, 183–186.

    Article  PubMed  CAS  Google Scholar 

  6. Dianov, G. L., Prasad, R., Wilson, S. H., and Bohr, V. A. (1999) J. Biol. Chem., 274, 13741–13743.

    Article  PubMed  CAS  Google Scholar 

  7. Plug, A. W., Clairmont, C. A., Sapi, E., Ashley, T., and Sweasy, J. B. (1997) Proc. Natl. Acad. Sci. USA, 94, 1327–1331.

    Article  PubMed  CAS  Google Scholar 

  8. Sugo, N., Aratani, Y., Nagashima, Y., Kubota, Y., and Koyama, H. (2000) EMBO J., 19, 1397–1404.

    Article  PubMed  CAS  Google Scholar 

  9. Kunkel, T. A., and Alexander, P. S. (1986) J. Biol. Chem., 261, 160–166.

    PubMed  CAS  Google Scholar 

  10. Singhal, R. K., and Wilson, S. H. (1993) J. Biol. Chem., 268, 15906–15911.

    PubMed  CAS  Google Scholar 

  11. Ahn, J., Kraynov, V. S., Zhong, X. J., Werneburg, B. G., and Tsai, M. D. (1998) Biochem. J., 331, 79–87.

    PubMed  CAS  Google Scholar 

  12. Vaisman, A., Warren, M. W., and Chaney, S. G. (2001) J. Biol. Chem., 276, 18999–19005.

    Article  PubMed  CAS  Google Scholar 

  13. Uchiyama, Y., Kimura, S., Yamamoto, T., Ishibashi, T., and Sakaguchi, K. (2004) Eur. J. Biochem., 271, 2799–2807.

    Article  PubMed  CAS  Google Scholar 

  14. Lebedeva, N. A., Rechkunova, N. I., Dezhurov, S. V., Khodyreva, S. N., Favre, A., Blanco, L., and Lavrik, O. I. (2005) Biochim. Biophys. Acta, 1751, 150–158.

    PubMed  CAS  Google Scholar 

  15. Garcia-Diaz, M., Dominguez, O., Lopez-Fernandez, L. A., de Lera, L. T., Saniger, M. L., Ruiz, J. F., Parraga, M., Garcia-Ortiz, M. J., Kirchhoff, T., del Mazo, J., Bernard, A., and Blanco, L. (2000) J. Mol. Biol., 301, 851–867.

    Article  PubMed  CAS  Google Scholar 

  16. Lee, J. W., Blanco, L., Zhou, T., Garcia-Diaz, M., Bebenek, K., Kunkel, T. A., Wang, Z., and Povirk, L. F. (2004) J. Biol. Chem., 279, 805–811.

    Article  PubMed  CAS  Google Scholar 

  17. Garcia-Diaz, M., Bebenek, K., Sabariegos, R., Dominguez, O., Rodrigues, J., Kirchhoff, T., Garcia-Palomero, E., Picher, A. J., Juarez, R., Ruiz, J. F., Kunkel, T. A., and Blanco, L. (2002) J. Biol. Chem., 277, 13184–13191.

    Article  PubMed  CAS  Google Scholar 

  18. Lindahl, T., and Wood, R. D. (1999) Science, 286, 1897–1905.

    Article  PubMed  CAS  Google Scholar 

  19. Maga, G., Villani, G., Crespan, E., Wimmer, U., Ferrari, E., Bertocci, B., and Hubscher, U. (2007) Nature, 447, 606–608.

    Article  PubMed  CAS  Google Scholar 

  20. Cox, M. M. (2001) Annu. Rev. Biochem., 71, 71–100.

    PubMed  Google Scholar 

  21. Wilson, D. M., III (2005) J. Mol. Biol., 345, 1003–1014.

    Article  PubMed  CAS  Google Scholar 

  22. Cahill, D., Connor, B., and Carney, J. P. (2006) Front. Biosci., 11, 1958–1976.

    Article  PubMed  CAS  Google Scholar 

  23. Braithwaite, E. K., Prasad, R., Shock, D. D., Hou, E. W., Beard, W. A., and Wilson, S. H. (2005) J. Biol. Chem., 280, 18469–18475.

    Article  PubMed  CAS  Google Scholar 

  24. Date, T., Yamaguchi, M., Hirose, F., Nishimoto, Y., Tanihara, K., and Matsukage, A. (1998) Biochemistry, 27, 2983–2990.

    Article  Google Scholar 

  25. Wlassoff, W. A., Dobrikov, M. I., Safronov, I. V., Dudko, R. Y., Bogachev, V. S., Kandaurova, V. V., Shishkin, G. V., Dymshits, G. M., and Lavrik, O. I. (1995) Bioconjug. Chem., 6, 352–360.

    Article  PubMed  CAS  Google Scholar 

  26. Kolpashchikov, D. M., Zakharenko, A. L., Dezhurov, S. V., Rechkunova, N. I., Khodyreva, S. N., Degtyarev, S. Kh., Litvak, V. V., and Lavrik, O. I. (1999) Bioorg. Khim., 25, 129–136.

    PubMed  CAS  Google Scholar 

  27. Dezhurov, S. V., Khodyreva, S. N., Plekhanova, E. S., and Lavrik, O. I. (2005) Bioconjug. Chem., 16, 215–222.

    Article  PubMed  CAS  Google Scholar 

  28. Yamshchikov, V. F. (1990) in Methods of Molecular Genetics and Gene Engineering (Salganik, R. I., ed.) [in Russian], Nauka, Novosibirsk, p. 28.

    Google Scholar 

  29. Yamshchikov, V. F. (1990) in Methods of Molecular Genetics and Gene Engineering (Salganik, R. I., ed.) [in Russian], Nauka, Novosibirsk, pp. 145–154.

    Google Scholar 

  30. Khodyreva, S. N., and Lavrik, O. I. (2005) Curr. Med. Chem., 12, 641–655.

    PubMed  CAS  Google Scholar 

  31. Blanca, G., Villani, G., Shevelev, I., Ramadan, K., Spadari, S., Hubscher, U., and Maga, G. (2004) Biochemistry, 43, 11605–11615.

    Article  PubMed  CAS  Google Scholar 

  32. Taylor, J. S. (2002) Mutat. Res., 510, 55–70.

    PubMed  CAS  Google Scholar 

  33. Kunkel, T. A., and Alexander, S. J. (1986) J. Biol. Chem., 261, 160–166.

    PubMed  CAS  Google Scholar 

  34. Maga, G., Villani, G., Ramadan, K., Shevelev, I., le Gac, N. T., Blanco, L., Blanca, G., Spadari, S., and Hubscher, U. (2002) J. Biol. Chem., 277, 48434–48440.

    Article  PubMed  CAS  Google Scholar 

  35. Maga, G., Shevelev, I., Villani, Spadari, S., and Hubscher, U. (2006) Nucleic Acids Res., 34, 1405–1415.

    Article  PubMed  CAS  Google Scholar 

  36. Crespan, E., Hubscher, U., and Maga, G. (2007) Nucleic Acids Res., 35, 5173–1581.

    Article  PubMed  CAS  Google Scholar 

  37. Krasikova, Yu. S., Belousova, E. A., Lebedeva, N. A., Pestryakov, P. E., and Lavrik, O. I. (2008) Biochemistry (Moscow), 73, 1042–1046.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. I. Lavrik.

Additional information

Original Russian Text © A. A. Shtygasheva, E. A. Belousova, N. I. Rechkunova, N. A. Lebedeva, O. I. Lavrik, 2008, published in Biokhimiya, 2008, Vol. 73, No. 11, pp. 1504–1512.

Originally published in Biochemistry (Moscow) On-Line Papers in Press, as Manuscript BM07-440, October 19, 2008.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shtygasheva, A.A., Belousova, E.A., Rechkunova, N.I. et al. DNA polymerases β and λ as potential participants of TLS during genomic DNA replication on the lagging strand. Biochemistry Moscow 73, 1207–1213 (2008). https://doi.org/10.1134/S0006297908110060

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297908110060

Key words

Navigation