Skip to main content
Log in

Tolerance to antimicrobial agents and persistence of Escherichia coli and cyanobacteria

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Bacterial persistence is the tolerance of a small part of a cell population to bactericidal agents, which is attained by a suppression of important cell functions and subsequent deceleration or cessation of cell division. The growth rate is the decisive factor in the transition of the cells to the persister state. A comparative study of quickly growing Escherichia coli K-12 strain MC 4100 and cyanobacteria Synechocystis sp. PCC 6803 and Anabaena variabilis ATCC 29413 growing slowly was performed. The cyanobacterial cells, like E. coli cells, differed in sensitivity to antimicrobial substances depending on the growth phase. Carbenicillin inhibiting the synthesis of peptidoglycan, a component of the bacterial cell wall, and lincomycin inhibiting the protein synthesis gave rise to nucleoid decay in cells from exponential cultures of Synechocystis 6803 and did not influence the nucleoids in cells from stationary cultures. Carbenicillin suppressed the growth of exponential cultures and had no effect on cyanobacterial stationary cultures. A suppression of Synechocystis 6803 growth in the exponential phase by lincomycin was stronger than in the stationary phase. Similar data were obtained with cyanobacterial cells under the action of H2O2 or menadione, an inducer of reactive oxygen species production. Slowly growing cyanobacteria were similar to quickly growing E. coli in their characteristics. Persistence is a characteristic feature of cyanobacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

DAPI:

4′,6-diamidino-2-phenylindole

PI:

propidium iodide

References

  1. Bigger, J. W. (1944) Lancet, 11, 497–500 (cited by [2]).

    Article  Google Scholar 

  2. Lewis, K. (2005) Biochemistry (Moscow), 70, 267–274.

    Article  CAS  Google Scholar 

  3. Lewis, K. (2007) Nature Rev. Microbiol., 5, 48–56.

    Article  CAS  Google Scholar 

  4. Keren, I., Shah, D., Spoering, A., Kaldalu, N., and Lewis, K. (2004) J. Bacteriol., 186, 8172–8180.

    Article  PubMed  CAS  Google Scholar 

  5. Spoering, A. L., and Lewis, K. (2001) J. Bacteriol., 183, 6746–6751.

    Article  PubMed  CAS  Google Scholar 

  6. Keren, I., Kaldalu, N., Spoering, A., Wang, Y., and Lewis, K. (2004) FEMS Microbiol. Lett., 230, 13–18.

    Article  PubMed  CAS  Google Scholar 

  7. Moyed, H. S., and Bertrand, K. P. (1983) J. Bacteriol., 155, 768–775.

    PubMed  CAS  Google Scholar 

  8. Falla, T. Y., and Chopra, I. (1998) Antimicrob. Agents Chemother., 42, 3282–3284.

    PubMed  CAS  Google Scholar 

  9. Pedersen, K., Christensen, S. K., and Gerdes, K. (2002) Mol. Microbiol., 45, 501–510.

    Article  PubMed  CAS  Google Scholar 

  10. Engelberg-Kulka, H., Sat, B., Reches, M., Amitai, S., and Hazan, R. (2004) Trends Microbiol., 12, 66–71.

    Article  PubMed  CAS  Google Scholar 

  11. Engelberg-Kulka, H., Hazan, R., and Amitai, S. (2005) J. Cell Sci., 118, 4327–4332.

    Article  PubMed  CAS  Google Scholar 

  12. LaFleur, M. D., Kumamoto, C. A., and Lewis, K. (2006) Antimicrob. Agents Chemother., 50, 3839–3846.

    Article  PubMed  CAS  Google Scholar 

  13. Rippka, R., Derulles, J., Waterbury, J. B., Herdman, M., and Stainer, R. Y. (1979) J. Gen. Microbiol., 181, 1–60.

    Google Scholar 

  14. Stocks, S. M. (2004) Cytometry, Pt. A 61A, 189–195.

  15. Trotta, E., Del Grosso, N., Erba, M., Melino, S., Cicero, D., and Paci, M. (2003) Eur. J. Biochem., 270, 4755–4761.

    Article  PubMed  CAS  Google Scholar 

  16. Samuilov, V. D., Oleskin, A. V., and Lagunova, E. M. (2000) Biochemistry (Moscow), 65, 873–887.

    CAS  Google Scholar 

  17. Samuilov, V. D., Bezryadnov, D. V., Gusev, M. V., Kitashov, A. V., and Fedorenko, T. A. (2001) Biochemistry (Moscow), 66, 640–645.

    Article  CAS  Google Scholar 

  18. Samuilov, V. D., Timofeev, K. N., Sinitsyn, S. V., and Bezryadnov, D. V. (2004) Biochemistry (Moscow), 69, 926–933.

    Article  CAS  Google Scholar 

  19. Arkad’eva, Z. A. (1989) in Industrial Microbiology (Egorov, N. S., ed.) [in Russian] Vysshaya Shkola, Moscow, pp. 149–167.

    Google Scholar 

  20. Bukharin, O. V. (2006) Mikrobiol. Zh., No. 4, 4–8.

  21. Costerton, J. W., Stewart, P. S., and Greenberg, E. P. (1999) Science, 284, 1318–1322.

    Article  PubMed  CAS  Google Scholar 

  22. Samuilov, V. D., Bezryadnov, D. V., Gusev, M. V., Kitashov, A. V., and Fedorenko, T. A. (1999) Biochemistry (Moscow), 64, 47–53.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. D. Samuilov.

Additional information

Original Russian Text © V. D. Samuilov, A. V. Bulakhov, D. B. Kiselevsky, Yu. E. Kuznetsova, D. V. Molchanova, S. V. Sinitsyn, A. A. Shestak, 2008, published in Biokhimiya, 2008, Vol. 73, No. 7, pp. 1032–1038.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Samuilov, V.D., Bulakhov, A.V., Kiselevsky, D.B. et al. Tolerance to antimicrobial agents and persistence of Escherichia coli and cyanobacteria. Biochemistry Moscow 73, 833–838 (2008). https://doi.org/10.1134/S0006297908070122

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297908070122

Key words

Navigation