Skip to main content
Log in

Induction of β-1,3-glucanase in callus cultures in vitro

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Sodium salicylate (NaSA) increased induction of both intracellular and extracellular β-1,3-glucanases in calluses of campion and duckweed. NaSA concentrations from 30 to 100 mM were optimal for induction of intracellular glucanase in the campion callus, and for induction of extracellular glucanase the optimal concentration varied from 5 to 100 mM. The glucanase activity in the duckweed callus was lower than in the campion callus, and co-cultivation of the campion callus with Trichoderma harzianum mycelium increased the production of intracellular and extracellular β-1,3-glucanases and polygalacturonase in the callus. Biosynthesis by T. harzianum of glucanases, extracellular polygalacturonase and xylanase, and of intracellular galactosidase was increased. The cocultivation was accompanied by increased activity of intracellular acidic isoform of glucanase Glu-3 secreted by the callus cells into the medium, whereas NaSA activated in the callus culture the extracellular acidic isoform Glu-1 and extracellular basic isoform Glu-5. These data indicate the induction of these isoforms and the specificity of protective response of plant cells to different factors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

NaSA:

sodium salicylate

PG:

polygalacturonase

PR-proteins:

pathogenesis-related proteins

References

  1. Dixon, R. A., Harrison, M. J., and Lamb, C. J. (1994) Ann. Rev. Phytopathol., 32, 479–501.

    Article  CAS  Google Scholar 

  2. Lozovaya, V. V., Waranyuwat, A., and Widholm, J. M. (1998) Crop Sci., 38, 1255–1260.

    CAS  Google Scholar 

  3. Salles, I. I., Blount, J. W., Dixon, R. A., and Schubert, K. (2002) Physiol. Mol. Plant Pathol., 61, 89–101.

    Article  CAS  Google Scholar 

  4. Anuratha, C. S., Zen, K.-C., Cole, K. C., and Krishnan, S. M. (1996) Physiol. Plant., 97, 39–46.

    Article  CAS  Google Scholar 

  5. Mauch, F., Mauch-Mani, B., and Boller, T. (1988) Plant Physiol., 88, 936–942.

    Article  PubMed  CAS  Google Scholar 

  6. Meins, F., Jr., Neuhaus, J.-M., Sperisen, C., and Ryfal, J. (1992) in Genes Involved in Plant Defense (Boller, T., and Meins, F., Jr., eds.) Springer Verlag, Vienna, pp. 245–282.

    Google Scholar 

  7. Simmons, C. R. (1994) Plant Sci., 13, 325–387.

    CAS  Google Scholar 

  8. Burton, R. A., Qi, Z., Roulin, S., and Fincher, G. B. (1998) Plant Sci., 135, 39–47.

    Article  CAS  Google Scholar 

  9. Burketova, L., Sindelarova, M., and Sindelar, L. (1999) Biol. Plant., 42, 279–287.

    Article  CAS  Google Scholar 

  10. Mackerness, S. A.-H. (2000) Plant Growth Regul., 32, 27–39.

    Article  CAS  Google Scholar 

  11. Breiteneder, H., and Ebner, C. (2001) Curr. Opin. Allergy Clin. Immunol., 1, 261–267.

    PubMed  CAS  Google Scholar 

  12. Murashige, T., and Skoog, S. (1962) Physiol. Plant., 15, 473–479.

    Article  CAS  Google Scholar 

  13. Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randall, R. J. (1951) J. Biol. Chem., 193, 265–275.

    PubMed  CAS  Google Scholar 

  14. Nelson, N. (1944) J. Biol. Chem., 153, 375–380.

    CAS  Google Scholar 

  15. Sapunova, L. I., Mikhailova, R. V., and Lobanok, A. G. (1996) Russ. J. Appl. Biochem. Microbiol., 32, 506–509.

    CAS  Google Scholar 

  16. Ghose, T. K., and Bisaria, V. S. (1987) Pure Appl. Chem., 59, 1739–1752.

    Article  CAS  Google Scholar 

  17. Polygalina, G. V., Cherednichenko, V. S., and Rimareva, L. V. (2003) Determination of Enzyme Activity. A Reference Book [in Russian], DeLi Print, Moscow, pp. 138–140.

    Google Scholar 

  18. Maurer, G. (1971) Disk Electrophoresis [Russian translation], Mir, Moscow.

    Google Scholar 

  19. Pan, S. Q., Ye, X. S., and Kuc, J. (1991) Phytopathology, 81, 970–974.

    Article  CAS  Google Scholar 

  20. Gentile, A., Tribulato, E., Deng, Z. N., Galun, E., Fluhr, R., and Vardi, A. (1993) Theor. Appl. Genet., 86, 527–532.

    Article  CAS  Google Scholar 

  21. Pozo, M. J., Azcon-Aguilar, C., Dumas-Gaudot, E., and Barea, J. M. (1999) Plant Sci., 141, 149–157.

    Article  CAS  Google Scholar 

  22. Brockmann, B., Smit, R., and Tudzynski, P. (1992) Physiol. Mol. Plant Pathol., 40, 191–201.

    Article  Google Scholar 

  23. Rodionova, N. A., and Bezborodov, A. M. (1997) Prikl. Biokhim. Mikrobiol., 33, 467–487.

    PubMed  CAS  Google Scholar 

  24. De Carvalho, F., Gheysen, G., Kushnir, S., van Montagu, M., Inze, D., and Gastresana, C. (1992) EMBO J., 11, 2595–2602.

    PubMed  Google Scholar 

  25. Linthorst, H. J. M. (1991) Crit. Rev. Plant Sci., 10, 123–150.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. A. Gunter.

Additional information

Original Russian Text © E. A. Gunter, O. M. Kapustina, O. V. Popeyko, T. I. Chelpanova, E. A. Efimtseva, Yu. S. Ovodov, 2008, published in Biokhimiya, 2008, Vol. 73, No. 7, pp. 1023–1031.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gunter, E.A., Kapustina, O.M., Popeyko, O.V. et al. Induction of β-1,3-glucanase in callus cultures in vitro . Biochemistry Moscow 73, 826–832 (2008). https://doi.org/10.1134/S0006297908070110

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297908070110

Key words

Navigation