Skip to main content
Log in

Analysis of RNA cleavage by RNA polymerases from Escherichia coli and Deinococcus radiodurans

  • Short Communications
  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

RNA polymerase can both synthesize and cleave RNA. Both reactions occur at the same catalytic center containing two magnesium ions bound to three aspartic acid residues of the absolutely conserved NADFDGD motif of the RNA polymerase β′ subunit. We have demonstrated that RNA polymerase from Deinococcus radiodurans possesses much higher rate of intrinsic RNA cleavage than RNA polymerase from Escherichia coli (the difference in the rates is about 15-fold at 20°C). However, these RNA polymerases do not differ in the rates of RNA synthesis. Comparison of the RNA polymerase sequences adjacent to the NADFDGD motif reveals the only amino acid substitution in this region (Glu751 in D. radiodurans vs. Ala455 in E. coli), which is localized in the secondary enzyme channel and can potentially affect the rate of RNA cleavage. Introduction of the corresponding substitution in the E. coli RNA polymerase leads to a slight (about 2–3-fold) increase in the cleavage rate, but does not affect RNA synthesis. Thus, the difference in the RNA cleavage rates between E. coli and D. radiodurans RNA polymerases is likely determined by multiple amino acid substitutions, which do not affect the rate of RNA synthesis and are localized in several regions of the active center.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abbreviations

nt:

nucleotides

RNAP:

RNA polymerase

References

  1. Orlova, M., Newlands, J., Das, A., Goldfarb, A., and Borukhov, S. (1995) Proc. Natl. Acad. Sci. USA, 92, 4596–4600.

    Article  PubMed  CAS  Google Scholar 

  2. Sosunov, V., Sosunova, E., Mustaev, A., Bass, I., Nikiforov, V., and Goldfarb, A. (2003) EMBO J., 22, 2234–2244.

    Article  PubMed  CAS  Google Scholar 

  3. Komissarova, N., and Kashlev, M. (1997) J. Biol. Chem., 272, 15329–15338.

    Article  PubMed  CAS  Google Scholar 

  4. Komissarova, N., and Kashlev, M. (1997) Proc. Natl. Acad. Sci. USA, 94, 1755–1760.

    Article  PubMed  CAS  Google Scholar 

  5. Laptenko, O., Lee, J., Lomakin, I., and Borukhov, S. (2003) EMBO J., 22, 6322–6334.

    Article  PubMed  CAS  Google Scholar 

  6. Steitz, T. A. (1998) Nature, 391, 231–232.

    Article  PubMed  CAS  Google Scholar 

  7. Zhang, G., Campbell, E. A., Minakhin, L., Richter, C., Severinov, K., and Darst, S. A. (1999) Cell, 98, 811–824.

    Article  PubMed  CAS  Google Scholar 

  8. Vassylyev, D. G., Sekine, S., Laptenko, O., Lee, J., Vassylyeva, M. N., Borukhov, S., and Yokoyama, S. (2002) Nature, 417, 712–719.

    Article  PubMed  CAS  Google Scholar 

  9. Murakami, K. S., Masuda, S., and Darst, S. A. (2002) Science, 296, 1280–1284.

    Article  PubMed  CAS  Google Scholar 

  10. Vassylyev, D. G., Vassylyeva, M. N., Perederina, A., Tahirov, T. H., and Artsimovitch, I. (2007) Nature, 448, 157–162.

    Article  PubMed  CAS  Google Scholar 

  11. Korzheva, N., Mustaev, A., Kozlov, M., Malhotra, A., Nikiforov, V., Goldfarb, A., and Darst, S. A. (2000) Science, 289, 619–625.

    Article  PubMed  CAS  Google Scholar 

  12. Epshtein, V., Mustaev, A., Markovtsov, V., Bereshchenko, O., Nikiforov, V., and Goldfarb, A. (2002) Mol. Cell, 10, 623–634.

    Article  PubMed  CAS  Google Scholar 

  13. Sosunova, E., Sosunov, V., Kozlov, M., Nikiforov, V., Goldfarb, A., and Mustaev, A. (2003) Proc. Natl. Acad. Sci. USA, 100, 15469–15474.

    Article  PubMed  CAS  Google Scholar 

  14. Opalka, N., Chlenov, M., Chacon, P., Rice, W. J., Wriggers, W., and Darst, S. A. (2003) Cell, 114, 335–345.

    Article  PubMed  CAS  Google Scholar 

  15. Minakhin, L., Nechaev, S., Campbell, E. A., and Severinov, K. (2001) J. Bacteriol., 183, 71–76.

    Article  PubMed  CAS  Google Scholar 

  16. Kulbachinskiy, A., Bass, I., Bogdanova, E., Goldfarb, A., and Nikiforov, V. (2004) J. Bacteriol., 186, 7818–7820.

    Article  PubMed  CAS  Google Scholar 

  17. Borukhov, S., and Goldfarb, A. (1993) Protein. Expr. Purif., 4, 503–511.

    Article  PubMed  CAS  Google Scholar 

  18. Komissarova, N., Kireeva, M. L., Becker, J., Sidorenkov, I., and Kashlev, M. (2003) Meth. Enzymol., 371, 233–251.

    Article  PubMed  CAS  Google Scholar 

  19. Sosunov, V., Zorov, S., Sosunova, E., Nikolaev, A., Zakeyeva, I., Bass, I., Goldfarb, A., Nikiforov, V., Severinov, K., and Mustaev, A. (2005) Nucleic Acids Res., 33, 4202–4211.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Kulbachinskiy.

Additional information

Original Russian Text © D. V. Pupov, N. A. Barinova, A. V. Kulbachinskiy, 2008, published in Biokhimiya, 2008, Vol. 73, No. 6, pp. 903–908.

Originally published in Biochemistry (Moscow) On-Line Papers in Press, as Manuscript BM08-052, May 25, 2008.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pupov, D.V., Barinova, N.A. & Kulbachinskiy, A.V. Analysis of RNA cleavage by RNA polymerases from Escherichia coli and Deinococcus radiodurans . Biochemistry Moscow 73, 725–729 (2008). https://doi.org/10.1134/S000629790806014X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S000629790806014X

Key words

Navigation