Skip to main content
Log in

Coalescence of spherical beads of retro-HSP12.6 into linear and ring-shaped amyloid nanofibers

  • Accelerated Publication
  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

The sequence-reversed form of a small heat shock protein, HSP12.6 (retro-HSP12.6), has been reported to fold and assemble into structured tetramers in aqueous solution. Upon raising the protein concentration to ∼1.0–1.5 mg/ml, tetrameric retro-HSP12.6 is known to display a tendency to associate further into spherical beads of 18–20 nm in diameter containing folded protein subunits. Here we report that storage of this protein at low temperatures leads to further association of the beaded structures into linear and ring-shaped amyloid nanofibers of 18–20 nm in diameter. The electron micrographs presented in this communication provide the best visual evidence yet that amyloids can form through the association of smaller structured bead-like intermediates. The results also suggest that folded β-sheet-rich subunits can participate in amyloid formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rousseau, F., Schymkowitz, J., and Serrano, L. (2006) Curr. Opin. Struct. Biol., 16, 118–126.

    Article  PubMed  CAS  Google Scholar 

  2. Guptasarma, P. (1992) FEBS Lett., 310, 205–210.

    Article  PubMed  CAS  Google Scholar 

  3. Guptasarma, P. (1996) Trends Biotechnol., 14, 42–43.

    Article  CAS  Google Scholar 

  4. Shukla, A., Raje, M., and Guptasarma, P. (2003) J. Biol. Chem., 278, 26505–26510.

    Article  PubMed  CAS  Google Scholar 

  5. Shukla, A., Raje, M., and Guptasarma, P. (2003) Protein Eng., 16, 875–879.

    Article  PubMed  CAS  Google Scholar 

  6. Malisauskas, M., Zamotin, V., Jass, J., Noppe, W., Dobson, C. M., and Morozova-Roche, L. A. (2003) J. Mol. Biol., 330, 879–890.

    Article  PubMed  CAS  Google Scholar 

  7. Kelly, J. W. (1998) Curr. Opin. Struct. Biol., 8, 101–106.

    Article  PubMed  CAS  Google Scholar 

  8. Dobson, C. M. (2001) Philos. Trans. R. Soc. Lond. B. Biol. Sci., 356, 133–145.

    Article  PubMed  CAS  Google Scholar 

  9. Chiti, F., Webster, P., Taddei, N., Clark, A., Stefani, M., Ramponi, G., and Dobson, C. M. (1999) Proc. Natl. Acad. Sci. USA, 96, 3590–3594.

    Article  PubMed  CAS  Google Scholar 

  10. Prusiner, S. B., Scott, M. R., de Armond, S. J., and Cohen, F. E. (1998) Cell, 93, 337–345.

    Article  PubMed  CAS  Google Scholar 

  11. Janowski, R., Kozak, M., Jankowska, E., Grzonka, Z., Grubb, A., Abrahamson, M., and Jaskolski, M. (2001) Nat. Struct. Biol., 8, 316–320.

    Article  PubMed  CAS  Google Scholar 

  12. Knaus, K. J., Morillas, M., Swietnicki, W., Malone, M., Surewicz, W. K., and Yee, V. C. (2001) Nat. Struct. Biol., 8, 770–774.

    Article  PubMed  CAS  Google Scholar 

  13. Staniforth, R. A., Giannini, S., Higgins, L. D., Conroy, M. J., Hounslow, A. M., Jerala, R., Craven, C. J., and Waltho, J. P. (2001) EMBO J., 20, 4774–4781.

    Article  PubMed  CAS  Google Scholar 

  14. Jimenez, J. L., Guijarro, J. I., Orlova, E., Zurdo, J., Dobson, C. M., Sunde, M., and Saibil, H. R. (1999) EMBO J., 18, 815–821.

    Article  PubMed  CAS  Google Scholar 

  15. Sinha, N., Tsai, C. J., and Nussinov, R. (2001) Protein Eng., 14, 93–103.

    Article  PubMed  CAS  Google Scholar 

  16. Siepen, J. A., Radford, S. E., and Westhead, D. R. (2003) Protein Sci., 12, 2348–2359.

    Article  PubMed  CAS  Google Scholar 

  17. Blackley, H. K., Patel, N., Davies, M. C., Roberts, C. J., Tendler, S. J., Wilkinson, M. J., and Williams, P. M. (1999) Exp. Neurol., 158, 437–443.

    Article  PubMed  CAS  Google Scholar 

  18. Carrotta, R., Bauer, R., Waninge, R., and Rischel, C. (2001) Protein Sci., 10, 1312–1328.

    Article  PubMed  CAS  Google Scholar 

  19. Lee, H. J., and Lee, S. J. (2002) J. Biol. Chem., 277, 48976–48983.

    Article  PubMed  CAS  Google Scholar 

  20. Gorman, P. M., Yip, C. M., Fraser, P. E., and Chakrabarty, A. (2003) J. Mol. Biol., 325, 743–757.

    Article  PubMed  CAS  Google Scholar 

  21. Srinivasan, R., Jones, E. M., Liu, K., Ghiso, J., Marchant, R. E., and Zagorski, M. G. (2003) J. Mol. Biol., 333, 1003–1023.

    Article  PubMed  CAS  Google Scholar 

  22. Shahi, P., Sharma, R., Sanger, S., Kumar, I., and Jolly, R. S. (2007) Biochemistry, 46, 7365–7373.

    Article  PubMed  CAS  Google Scholar 

  23. Lundberg, K. M., Stenland, C. J., Cohen, F. E., Prusiner, S. B., and Millhauser, G. L. (1997) Chem. Biol., 4, 345–355.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Guptasarma.

Additional information

Published in Russian in Biokhimiya, 2008, Vol. 73, No. 6, pp. 848–853.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shukla, A., Raje, M. & Guptasarma, P. Coalescence of spherical beads of retro-HSP12.6 into linear and ring-shaped amyloid nanofibers. Biochemistry Moscow 73, 681–685 (2008). https://doi.org/10.1134/S0006297908060084

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297908060084

Key words

Navigation