Skip to main content
Log in

Effect of amino acids on X-ray-induced hydrogen peroxide and hydroxyl radical formation in water and 8-oxoguanine in DNA

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Generation of hydrogen peroxide and hydroxyl radicals in L-amino acid solutions in phosphate buffer, pH 7.4, under X-ray irradiation was determined by enhanced chemiluminescence in the luminol-p-iodophenol-peroxidase system and using the fluorescent probe coumarin-3-carboxylic acid, respectively. Amino acids are divided into three groups according to their effect on the hydrogen peroxide formation under irradiation: those decreasing yield of H2O2, having no effect, and increasing its yield. All studied amino acids at 1 mM concentration decrease the yield of hydroxyl radicals in solution under X-ray irradiation. However, the highest effect is observed in the order: Cys > His > Phe = Met = Trp > Tyr. At Cys, Tyr, and His concentrations close to physiological, the yield of hydroxyl radicals decreases significantly. Immunoenzyme analysis using monoclonal antibodies to 8-oxoguanine (8-oxo-7,8-dihydroguanine) was applied to study the effect of amino acids with the most pronounced antioxidant properties (Cys, Met, Tyr, Trp, Phe, His, Lys, Arg, Pro) on 8-oxoguanine formation in vitro under X-ray irradiation. It is shown that amino acids decrease the content of 8-oxoguanine in DNA. These amino acids within DNA-binding proteins may protect intracellular DNA against oxidative damage caused by formation of reactive oxygen species in conditions of moderate oxidative stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ABTS:

2,2′-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid)

CCA:

coumarin-3-carboxylic acid

DRF:

dose reduction factor

DVF:

dose variation factor

EPR:

electron paramagnetic resonance

LLPR:

long-lived protein radicals

7-OH-CCA:

7-hydroxy-coumarin-3-carboxylic acid

ROS:

reactive oxygen species

References

  1. Men’shchikova, E. B., Lankin, V. Z., Zenkov, N. K., Bondar’, I. A., Krugovykh, N. F., and Trufakin, V. A. (2006) Oxidative Stress. Prooxidants and Antioxidants [in Russian], Slovo, Moscow.

    Google Scholar 

  2. Kudryashov, Yu. B. (2004) Radiation Biophysics (Ionizing Radiations), [in Russian], Fizmatlit, Moscow.

    Google Scholar 

  3. Bruskov, V. I., Malakhova, L. V., Masalimov, Z. K., and Chernikov, A. V. (2002) Nucleic Acids Res., 30, 1354–1363.

    Article  PubMed  CAS  Google Scholar 

  4. Bruskov, V. I., Masalimov, Z. K., and Chernikov, A. V. (2002) Dokl. RAN, 384, 821–824.

    Google Scholar 

  5. Chernikov, A. V., and Bruskov, V. I. (2002) Biofizika, 47, 773–781.

    PubMed  CAS  Google Scholar 

  6. Bruskov, V. I., Chernikov, A. V., Gudkov, S. V., and Masalimov, Z. K. (2003) Biofizika, 48, 1022–11029.

    PubMed  CAS  Google Scholar 

  7. Oktyabrskii, O. N., and Smirnova, G. V. (2007) Biochemistry (Moscow), 72, 132–145.

    Article  Google Scholar 

  8. Du, J., and Gebicki, M. (2004) Int. J. Biochem. Cell Biol., 36, 2334–2343.

    Article  PubMed  CAS  Google Scholar 

  9. Koyama, S., Kodama, S., Suzuki, K., Matsumoto, T., Miyazaki, T., and Watanabe, M. (1998) Mutat. Res., 421, 45–54.

    PubMed  CAS  Google Scholar 

  10. Kumagai, J., Nakama, M., Miyazaki, T., Ise, T., Kodama, S., and Watanabe, M. (2002) Radiat. Phys. Chem., 64, 293–297.

    Article  CAS  Google Scholar 

  11. Miyazaki, T., Morikawa, A., Kumagai, J., Ikehata, M., Koana, T., and Kikuchi, S. (2002) Radiat. Phys. Chem., 65, 151–157.

    Article  CAS  Google Scholar 

  12. Kumagai, J., Masui, K., Itagaki, Y., Shiotani, M., Kodama, S., Watanabe, M., and Miyazaki, T. (2003) Radiat. Res., 161, 95–102.

    Article  Google Scholar 

  13. Kumagai, J., Kawaura, T., Miyazaki, T., Prost, M., Prost, E., Watanabe, M., and Quentin-Leclercq, J. (2003) Radiat. Phys. Chem., 66, 17–25.

    Article  CAS  Google Scholar 

  14. Ostdal, H., Davies, M. J., and Andersen, H. J. (2002) Free Rad. Biol. Med., 33, 201–209.

    Article  PubMed  CAS  Google Scholar 

  15. Kumagai, J., Katon, H., Miyazaki, T., Hidema, J., and Kumagai, T. (1999) J. Radiat. Res., 40, 303–310.

    Article  PubMed  CAS  Google Scholar 

  16. Pietraforte, D., and Minetti, M. (1997) Biochem. J., 325, 675–684.

    PubMed  CAS  Google Scholar 

  17. Luxford, C., Morin, B., Dean, R. T., and Davies, M. J. (1999) Biochem. J., 344, 125–134.

    Article  PubMed  CAS  Google Scholar 

  18. Gudkov, S. V., Shtarkman, I. N., Chernikov, A. V., Usacheva, A. M., and Bruskov, V. I. (2007) Dokl. RAN, 413, 261–263.

    Google Scholar 

  19. Yoshimura, T., Matsuno, K., Miyazaki, T., Suzuki, K., and Watanabe, M. (1993) Radiat. Res., 136, 361–365.

    Article  PubMed  CAS  Google Scholar 

  20. Nauser, T., Koppenol, W. H., and Gebicki, J. M. (2005) Biochem. J., 392, 693–701.

    Article  PubMed  CAS  Google Scholar 

  21. Aruoma, O. I. (2003) Mut. Res., 523, 9–20.

    Google Scholar 

  22. Gudkov, S. V., Shtarkman, I. N., Smirnova, V. S., Chernikov, A. V., and Bruskov, V. I. (2006) Dokl. RAN, 407, 115–118.

    Google Scholar 

  23. Gudkov, S. V., Shtarkman, I. N., Smirnova, V. S., Chernikov, A. V., and Bruskov, V. I. (2006) Radiat. Res., 165, 538–545.

    Article  PubMed  CAS  Google Scholar 

  24. Meister, A., and Anderson, M. E. (1983) Ann. Rev. Biochem., 52, 711–760.

    Article  PubMed  CAS  Google Scholar 

  25. Boldyrev, A. A. (1998) Carnosine [in Russian], Moscow State University Publishing House, Moscow.

    Google Scholar 

  26. Khavinson, V. Kh., Kvetnoy, I. M., and Ashmarin, I. P. (2002) Uspekhi Sovrem. Biol., 122, 190–203.

    CAS  Google Scholar 

  27. Lass, A., Suessenbacher, A., Olkart, G. W., Mayer, B., and Brunner, F. (2002) Mol. Pharmacol., 61, 1081–1088.

    Article  PubMed  CAS  Google Scholar 

  28. Hayashi, T., Juilet, P. A. R., Matsui-Hirai, H., Miyazaki, A., Fukatsu, A., Funami, J., Iguchi, A., and Ignarro, L. J. (2005) Proc. Natl. Acad. Sci. USA, 102, 13681–13686.

    Article  PubMed  CAS  Google Scholar 

  29. Chen, C., and Dickman, M. B. (2005) Proc. Natl. Acad. Sci. USA, 102, 3459–3464.

    Article  PubMed  CAS  Google Scholar 

  30. Decker, E. A., Livisay, S. A., and Zhou, S. (2000) Biochemistry (Moscow), 65, 766–770.

    CAS  Google Scholar 

  31. Milligan, J. R., Aguilera, J. A., Ly, A., Tran, N. Q., Hoang, O., and Ward, J. F. (2003) Nucleic Acids Res., 31, 6258–6263.

    Article  PubMed  CAS  Google Scholar 

  32. Bruskov, V. I., Gaziev, A. I., Malakhova, L. V., Mantsygin, Yu. A., and Morenkov, O. S. (1996) Biochemistry (Moscow), 61, 535–540.

    Google Scholar 

  33. Pikaev, A. K. (1986) Modern Radiation Chemistry. Radiolysis of Gases and Liquids [in Russian], Nauka, Moscow.

    Google Scholar 

  34. Stadtman, E. R. (1993) Annu. Rev. Biochem., 62, 797–821.

    Article  PubMed  CAS  Google Scholar 

  35. Dorfman, L. M., and Adams, G. E. (1973) Natl. Stand. Ref. Data Ser., US Natl. Bur. Stand., No. 46, 43–49.

  36. Gebicki, S., and Gebicki, J. M. (1993) Biochem. J., 289, 743–749.

    PubMed  CAS  Google Scholar 

  37. Braams, R. (1966) Radiat. Res., 27, 319–329.

    Article  PubMed  CAS  Google Scholar 

  38. Davies, K. J. A., Delsignore, M. E., and Lin, S. W. (1987) J. Biol. Chem., 262, 9902–9907.

    PubMed  CAS  Google Scholar 

  39. Chistyakov, V. A., Kornienko, I. V., Kletskii, M. E., Kornienko, I. E., Lisitsin, A. S., and Novikov, V. V. (2005) Biofizika, 50, 601–605.

    CAS  Google Scholar 

  40. Stadtman, E. R., and Berlett, B. S. (1991) J. Biol. Chem., 296, 17201–17211.

    Google Scholar 

  41. Jovanovic, S. V., and Simic, M. G. (1986) J. Phys. Chem., 90, 974–978.

    Article  CAS  Google Scholar 

  42. Hall, D. B., Holmin, R. E., and Barton, J. K. (1996) Nature, 382, 731–735.

    Article  PubMed  CAS  Google Scholar 

  43. Henderson, P. T., Delanay, J. C., Gu, F., Tannenbaum, S. R., and Essigmann, J. M. (2002) Biochemistry, 41, 914–921.

    Article  PubMed  CAS  Google Scholar 

  44. Pan, J., Lin, W., Wang, W., Han, Z., Lu, C., Yao, S., Lin, N., and Zhu, D. (2001) Biophys. Chem., 89, 193–199.

    Article  PubMed  CAS  Google Scholar 

  45. Newton, G. L., Ly, A., Tran, N. Q., Ward, J. F., and Milligan, J. R. (2004) Int. J. Radiat. Biol., 80, 643–651.

    Article  PubMed  CAS  Google Scholar 

  46. Milligan, J. R., Tran, N. Q., Ly, A., and Ward, J. F. (2004) Biochemistry, 43, 5102–5108.

    Article  PubMed  CAS  Google Scholar 

  47. Ly, A., Bullick, S., Won, J.-H., and Milligan, J. R. (2004) Int. J. Radiat. Biol., 82, 421–433.

    Article  Google Scholar 

  48. Midorikawa, K., Murata, M., and Kawanishi, S. (2005) Biochem. Biophys. Res. Commun., 333, 1073–1077.

    Article  PubMed  CAS  Google Scholar 

  49. Furukava, A., Hiraku, Y., Oikawa, S., Luxford, C., Davies, M. J., and Kavanishi, S. (2005) Biochem. J., 388, 813–818.

    Article  Google Scholar 

  50. Burlakova, E. B. (2007) Ross. Khim. Zh., 51, 3–12.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. I. Bruskov.

Additional information

Original Russian Text © I. N. Shtarkman, S. V. Gudkov, A. V. Chernikov, V. I. Bruskov, 2008, published in Biokhimiya, 2008, Vol. 73, No. 4, pp. 576–586.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shtarkman, I.N., Gudkov, S.V., Chernikov, A.V. et al. Effect of amino acids on X-ray-induced hydrogen peroxide and hydroxyl radical formation in water and 8-oxoguanine in DNA. Biochemistry Moscow 73, 470–478 (2008). https://doi.org/10.1134/S0006297908040135

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297908040135

Key words

Navigation