Skip to main content
Log in

Novel DNA glycosylases from Mycobacterium tuberculosis

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Oxidized bases are removed from DNA of Escherichia coli by enzymes formamidopyrimidine DNA glycosylase (Eco-Fpg) and endonuclease VIII (Eco-Nei) of the same structural family Fpg/Nei. New homologs of these enzymes not characterized earlier have been found in genomes of Actinobacteria. We have cloned and expressed two paralogs (Mtu-Nei2 and Mtu-Fpg2) from 36KAZ and KHA94 isolates of Mycobacterium tuberculosis and studied their ability to participate in DNA repair. Under heterologous expression in E. coli, Mtu-Nei2 decreased the rate of spontaneous mutagenesis in the rpoB gene, whereas Mtu-Fpg2 moderately increased it, possibly due to absence of residues crucially important for catalysis in this protein. Mtu-Nei2 was highly active toward double-stranded DNA substrates containing dihydrouracil residues and apurine-apyrimidine sites and was less efficient in cleavage of substrates containing 8-oxoguanine and uracil residues. These lesions, as well as 8-oxoadenine residues, were also recognized and removed by the enzyme from single-stranded DNA. Fpg and Nei homologs from M. tuberculosis can play an important role in protection of bacteria against genotoxic stress caused by oxidative burst in macrophages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AP:

apurine-apyrimidine

BER:

base excision repair

DHU:

5,6-dihydrouracil

ODN:

oligodeoxyribonucleotide

8-oxoG:

7,8-dihydro-8-oxoguanine

References

  1. Von Sonntag, C. (2006) Free-Radical-Induced DNA Damage and Its Repair: A Chemical Perspective, Springer, Berlin-Heidelberg.

    Google Scholar 

  2. Friedberg, E. C., Walker, G. C., Siede, W., Wood, R. D., Schultz, R. A., and Ellenberger, T. (2006) DNA Repair and Mutagenesis, ASM Press, Washington, DC.

    Google Scholar 

  3. David, S. S., and Williams, S. D. (1998) Chem. Rev., 98, 1221–1261.

    Article  PubMed  CAS  Google Scholar 

  4. Vasilenko, N. L., and Nevinsky, G. A. (2003) Biochemistry (Moscow), 68, 135–151.

    Article  CAS  Google Scholar 

  5. Vasilenko, N. L., and Nevinsky, G. A. (2003) Mol. Biol. (Moscow), 37, 944–960.

    CAS  Google Scholar 

  6. Korolev, V. G. (2005) Genetika, 41, 725–735.

    PubMed  CAS  Google Scholar 

  7. Zharkov, D. O. (2007) Mol. Biol. (Moscow), 41, 772–786.

    CAS  Google Scholar 

  8. Plekhova, N. G. (2006) Zh. Mikrobiol. Epidemiol. Immunobiol., No. 8, 89–96.

  9. Nathan, C., and Shiloh, M. U. (2000) Proc. Natl. Acad. Sci. USA, 97, 8841–8848.

    Article  PubMed  CAS  Google Scholar 

  10. Saviola, B., and Bishai, W. (2006) in The Prokaryotes, Vol. 3 (Dworkin, M., ed.) Springer, N. Y., p. 919–933.

    Chapter  Google Scholar 

  11. Purnapatre, K., and Varshney, U. (1998) Eur. J. Biochem., 256, 580–588.

    Article  PubMed  CAS  Google Scholar 

  12. Handa, P., Acharya, N., and Varshney, U. (2001) J. Biol. Chem., 276, 16992–16997.

    Article  PubMed  CAS  Google Scholar 

  13. Acharya, N., Kumar, P., and Varshney, U. (2003) Microbiology, 149, 1647–1658.

    Article  PubMed  CAS  Google Scholar 

  14. Venkatesh, J., Kumar, P., Krishna, P. S. M., Manjunath, R., and Varshney, U. (2003) J. Biol. Chem., 278, 24350–24358.

    Article  PubMed  CAS  Google Scholar 

  15. Singh, P., Talawar, R. K., Krishna, P. D. V., Varshney, U., and Vijayan, M. (2006) Acta Crystallogr., F62, 1231–1234.

    CAS  Google Scholar 

  16. Cole, S. T., Brosch, R., Parkhill, J., Garnier, T., Churcher, C., Harris, D., Gordon, S. V., Eiglmeier, K., Gas, S., Barry, C. E., III, Tekaia, F., Badcock, K., Basham, D., Brown, D., Chillingworth, T., Connor, R., Davies, R., Devlin, K., Feltwell, T., Gentles, S., Hamlin, N., Holroyd, S., Hornsby, T., Jagels, K., Krogh, A., McLean, J., Moule, S., Murphy, L., Oliver, K., Osborne, J., Quail, M. A., Rajandream, M.-A., Rogers, J., Rutter, S., Seeger, K., Skelton, J., Squares, R., Squares, S., Sulston, J. E., Taylor, K., Whitehead, S., and Barrell, B. G. (1998) Nature, 393, 537–544.

    Article  PubMed  CAS  Google Scholar 

  17. Mizrahi, V., and Andersen, S. J. (1998) Mol. Microbiol., 29, 1331–1339.

    Article  PubMed  CAS  Google Scholar 

  18. Wallace, S. S., Bandaru, V., Kathe, S. D., and Bond, J. P. (2003) DNA Repair, 2, 441–453.

    Article  PubMed  CAS  Google Scholar 

  19. Rieger, R. A., McTigue, M. M., Kycia, J. H., Gerchman, S. E., Grollman, A. P., and Iden, C. R. (2000) J. Am. Soc. Mass Spectrom., 11, 505–515.

    Article  PubMed  CAS  Google Scholar 

  20. Gilboa, R., Zharkov, D. O., Golan, G., Fernandes, A. S., Gerchman, S. E., Matz, E., Kycia, J. H., Grollman, A. P., and Shoham, G. (2002) J. Biol. Chem., 277, 19811–19816.

    Article  PubMed  CAS  Google Scholar 

  21. Altschul, S. F., Gish, W., Miller, W., Myers, E. W., and Lipman, D. J. (1990) J. Mol. Biol., 215, 403–410.

    PubMed  CAS  Google Scholar 

  22. Miller, J. (1976) Experiments in Molecular Genetics [Russian translation], Mir, Moscow, pp. 206–207.

    Google Scholar 

  23. Rabow, L. E., and Kow, Y. W. (1997) Biochemistry, 36, 5084–5096.

    Article  PubMed  CAS  Google Scholar 

  24. Zharkov, D. O., Golan, G., Gilboa, R., Fernandes, A. S., Gerchman, S. E., Kycia, J. H., Rieger, R. A., Grollman, A. P., and Shoham, G. (2002) EMBO J., 21, 789–800.

    Article  PubMed  CAS  Google Scholar 

  25. Zharkov, D. O., Shoham, G., and Grollman, A. P. (2003) DNA Repair, 2, 839–862.

    Article  PubMed  CAS  Google Scholar 

  26. Kropachev, K. Y., Zharkov, D. O., and Grollman, A. P. (2006) Biochemistry, 45, 12039–12049.

    Article  PubMed  CAS  Google Scholar 

  27. Rosenquist, T. A., Zaika, E., Fernandes, A. S., Zharkov, D. O., Miller, H., and Grollman, A. P. (2003) DNA Repair, 2, 581–591.

    Article  PubMed  CAS  Google Scholar 

  28. Springer, B., Sander, P., Sedlacek, L., Hardt, W.-D., Mizrahi, V., Schar, P., and Bottger, E. C. (2004) Mol. Microbiol., 53, 1601–1609.

    Article  PubMed  CAS  Google Scholar 

  29. pET System Manual (2002) Novagen, p. 13.

  30. Cabrera, M., Nghiem, Y., and Miller, J. H. (1988) J. Bacteriol., 170, 5405–5407.

    PubMed  CAS  Google Scholar 

  31. Tajiri, T., Maki, H., and Sekiguchi, M. (1995) Mutat. Res., 336, 257–267.

    PubMed  CAS  Google Scholar 

  32. Kuipers, G. K., Slotman, B. J., Poldervaart, H. A., van Vilsteren, I. M. J., Reitsma-Wijker, C. A., and Lafleur, V. M. (2000) Mutat. Res., 460, 117–125.

    PubMed  CAS  Google Scholar 

  33. Wyrzykowski, J., and Volkert, M. R. (2003) J. Bacteriol., 185, 1701–1704.

    Article  PubMed  CAS  Google Scholar 

  34. Jiang, D., Hatahet, Z., Blaisdell, J. O., Melamede, R. J., and Wallace, S. S. (1997) J. Bacteriol., 179, 3773–3782.

    PubMed  CAS  Google Scholar 

  35. Dizdaroglu, M., Laval, J., and Boiteux, S. (1993) Biochemistry, 32, 12105–12111.

    Article  PubMed  CAS  Google Scholar 

  36. Tchou, J., Kasai, H., Shibutani, S., Chung, M.-H., Laval, J., Grollman, A. P., and Nishimura, S. (1991) Proc. Natl. Acad. Sci. USA, 88, 4690–4694.

    Article  PubMed  CAS  Google Scholar 

  37. Bulychev, N. V., Varaprasad, C. V., Dorman, G., Miller, J. H., Eisenberg, M., Grollman, A. P., and Johnson, F. (1996) Biochemistry, 35, 13147–13156.

    Article  PubMed  CAS  Google Scholar 

  38. Zaika, E. I., Perlow, R. A., Matz, E., Broyde, S., Gilboa, R., Grollman, A. P., and Zharkov, D. O. (2004) J. Biol. Chem., 279, 4849–4861.

    Article  PubMed  CAS  Google Scholar 

  39. Kuznetsov, N. A., Koval, V. V., Zharkov, D. O., Nevinsky, G. A., Douglas, K. T., and Fedorova, O. S. (2007) Biochemistry, 46, 424–435.

    Article  PubMed  CAS  Google Scholar 

  40. Hazra, T. K., Izumi, T., Venkataraman, R., Kow, Y. W., Dizdaroglu, M., and Mitra, S. (2000) J. Biol. Chem., 275, 27762–27767.

    PubMed  CAS  Google Scholar 

  41. Ichshenko, A. A., Bulychev, N. V., Maksakova, G. A., Johnson, F., and Nevinsky, G. A. (1997) Biochemistry (Moscow), 62, 204–211.

    Google Scholar 

  42. Lewis, J. G., and Adams, D. O. (1985) Cancer Res., 45, 1270–1275.

    PubMed  CAS  Google Scholar 

  43. Schlosser-Silverman, E., Elgrably-Weiss, M., Rosenshine, I., Kohen, R., and Altuvia, S. (2000) J. Bacteriol., 182, 5225–5230.

    Article  PubMed  CAS  Google Scholar 

  44. Suvarnapunya, A. E., Lagasse, H. D. A., and Stein, M. A. (2003) Mol. Microbiol., 48, 549–559.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. O. Zharkov.

Additional information

Original Russian Text © V. S. Sidorenko, M. A. Rot, M. L. Filipenko, G. A. Nevinsky, D. O. Zharkov, 2008, published in Biokhimiya, 2008, Vol. 73, No. 4, pp. 542–552.

Originally published in Biochemistry (Moscow) On-Line Papers in Press, as Manuscript BM07-319, February 3, 2008.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sidorenko, V.S., Rot, M.A., Filipenko, M.L. et al. Novel DNA glycosylases from Mycobacterium tuberculosis . Biochemistry Moscow 73, 442–450 (2008). https://doi.org/10.1134/S0006297908040093

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297908040093

Key words

Navigation