Skip to main content
Log in

Inhibition of catalase by aminotriazole in vivo results in reduction of glucose-6-phosphate dehydrogenase activity in Saccharomyces cerevisiae cells

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

The inhibitor of catalase 3-amino-1,2,4-triazole (AMT) was used to study the physiological role of catalase in the yeast Saccharomyces cerevisiae under starvation. It was shown that AMT at the concentration of 10 mM did not affect the growth of the yeast. In vivo and in vitro the degree of catalase inhibition by AMT was concentration- and time-dependent. Peroxisomal catalase in bakers’ yeast was more sensitive to AMT than the cytosolic one. In vivo inhibition of catalase by AMT in S. cerevisiae caused a simultaneous decrease in glucose-6-phosphate dehydrogenase activity and an increase in glutathione reductase activity. At the same time, the level of protein carbonyls, a marker of oxidative modification, was not affected. Possible mechanisms compensating the negative effects caused by AMT inhibition of catalase are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AMT:

3-amino-1,2,4-triazole

CP:

protein carbonyls

G6PDH:

glucose-6-phosphate dehydrogenase

GR:

glutathione reductase

ICDH:

isocitrate dehydrogenase

LDH:

lactate dehydrogenase

PMSF:

phenylmethylsulfonyl fluoride

ROS:

reactive oxygen species

SOD:

superoxide dismutase

TEMED:

N,N,N′,N′-tetramethylethylenediamine

References

  1. Bartosz, G. (2004) The Second Face of Oxygen. Free Radicals in Nature [in Polish], Wydawnictwo Naukowe PWN, Warsaw.

    Google Scholar 

  2. Ruis, H., and Koller, F. (1997) in Oxidative Stress and the Molecular Biology of Antioxidant Defenses (Scandalios, J. G., ed.) Cold Spring Harbor, Cold Spring Harbor Laboratory Press, N. Y., pp. 273–308.

    Google Scholar 

  3. Lushchak, O., Bagnyukova, T., and Lushchak, V. (2003) Ukr. Biochem. J., 75, 45–50.

    CAS  Google Scholar 

  4. Lushchak, V., Semchyshyn, H., Mandryk, S., and Lushchak, O. (2005) Arch. Biochem. Biophys., 441, 35–40.

    Article  PubMed  CAS  Google Scholar 

  5. Bagnyukova, T. V., Storey, K. B., and Lushchak, V. I. (2005) Comp. Biochem. Physiol., B142, 335–341.

    Google Scholar 

  6. Bayliak, M., Semchyshyn, H., and Lushchak, V. (2006) Biochemistry (Moscow), 71, 1013–1020.

    Article  CAS  Google Scholar 

  7. Semchyshyn, H., Dylyovyj, M., and Lushchak, V. (2002) Ukr. Biochem. J., 74, 34–41.

    CAS  Google Scholar 

  8. Lushchak, V. I., and Gospodaryov, D. V. (2005) Cell Biol. Int., 29, 187–192.

    Article  PubMed  CAS  Google Scholar 

  9. Lushchak, V., Semchyshyn, H., Lushchak, O., and Mandryk, S. (2005) Biochem. Biophys. Res. Commun., 338, 1739–1744.

    Article  PubMed  CAS  Google Scholar 

  10. Putnam, C. D., Arvai, A. S., Bourne, Y., and Tainer, J. A. (2000) J. Mol. Biol., 296, 295–309.

    Article  PubMed  CAS  Google Scholar 

  11. Tripathi, G., Wiltshire, C., Macaskill, S., Tournu, H., Budge, S., and Brown, A. J. P. (2002) EMBO J., 21, 5448–5456.

    Article  PubMed  CAS  Google Scholar 

  12. Lushchak, V. I. (1998) Biochem. Mol. Biol. Int., 44, 425–431.

    PubMed  CAS  Google Scholar 

  13. Bradford, M. M. (1976) Analyt. Biochem., 72, 248–254.

    Article  PubMed  CAS  Google Scholar 

  14. Costa, V., and Moradas-Ferreira, P. (2001) Molec. Aspects Med., 22, 217–246.

    Article  CAS  Google Scholar 

  15. Izawa, S., Inoue, Y., and Kimura, A. (1996) Biochem. J., 320, 61–67.

    PubMed  CAS  Google Scholar 

  16. Kowaltowski, A. J., Vercesi, A. E., Rhee, S. G., and Netto, L. E. (2000) FEBS Lett., 437, 177–182.

    Article  Google Scholar 

  17. Ueda, M., Kinoshita, H., Yoshida, H., Kamasawa, N., Osumi, M., and Tanaka, A. (2003) FEMS Microbiol. Lett., 219, 93–98.

    Article  PubMed  CAS  Google Scholar 

  18. Barja de Quiroga, G., Lopez-Torres, M., and Perez-Campo, R. (1989) Comp. Biochem. Physiol., C94, 391–398.

    Google Scholar 

  19. Perez-Campo, R., Lopez-Torres, M., Rojas, C., Cadenas, S., and Barja de Quiroga, G. (1993) Mechanisms Ageing Devel., 67, 115–127.

    Article  CAS  Google Scholar 

  20. Bagnyukova, T. V., Vasylkiv, O. Yu., Storey, K. B., and Lushchak, V. I. (2005) Brain Res., 1052, 180–186.

    Article  PubMed  CAS  Google Scholar 

  21. Hawkes, T. R., Thomas, P. G., Edwards, L. S., Rayner, S. J., and Wilkinson, K. W. (1995) Biochem. J., 306, 385–397.

    PubMed  CAS  Google Scholar 

  22. Benjamin, P. M., Wu, J. I., Mitchell, A. P., and Magasanik, B. (1989) Mol. Gen. Genet., 217, 370–377.

    Article  PubMed  CAS  Google Scholar 

  23. Kanazawa, S., Driscoll, M., and Struhl, K. (1988) Mol. Cell Biol., 8, 664–673.

    PubMed  CAS  Google Scholar 

  24. Natarajan, K., Meyer, M. R., Jackson, B. M., Slade, D., Roberts, C., Hinnebusch, A. G., and Marton, M. J. (2001) Mol. Cell. Biol., 21, 4347–4368.

    Article  PubMed  CAS  Google Scholar 

  25. Yin, Z., Stead, D., Selway, L., Walker, J., Riba-Garcia, I., Mclnerney, T., Gaskell, S., Oliver, S. G., Cash, P., and Brown, A. J. P. (2004) Proteomics, 4, 2425–2436.

    Article  PubMed  CAS  Google Scholar 

  26. Anderson, R. M., Latorre-Esteves, M., Neves, A. R., Lavu S., Medvedik, O., Taylor, C., Howitz, K. T., Santos, H., and Sinclair, D. A. (2003) Science, 302, 2124–2126.

    Article  PubMed  CAS  Google Scholar 

  27. Sinclair, D., Mills, K., and Guarente, L. (1998) Annu. Rev. Microbiol., 52, 533–560.

    Article  PubMed  CAS  Google Scholar 

  28. Fabrizio, P., Gattazzo, C., Battistella, L., Wei, M., Cheng, C., McGrew, K., and Longo, V. D. (2000) Cell, 123, 655–667.

    Article  CAS  Google Scholar 

  29. Madeo, F., Herker, E., Wissing, S., Jungwirth, H., Eisenberg, T., and Frohlich, K. U. (2004) Curr. Opin. Microbiol., 7, 655–660.

    Article  PubMed  CAS  Google Scholar 

  30. Demple, B. (1991) Annu. Rev. Genet., 25, 315–337.

    Article  PubMed  CAS  Google Scholar 

  31. Gospodaryov, D., Bayliak, M., and Lushchak, V. (2005) Ukr. Biochem. J., 77, 54–60.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Lushchak.

Additional information

Published in Russian in Biokhimiya, 2008, Vol. 73, No. 4, pp. 515–523.

Originally published in Biochemistry (Moscow) On-Line Papers in Press, as Manuscript BM07-269, February 24, 2008.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bayliak, M., Gospodaryov, D., Semchyshyn, H. et al. Inhibition of catalase by aminotriazole in vivo results in reduction of glucose-6-phosphate dehydrogenase activity in Saccharomyces cerevisiae cells. Biochemistry Moscow 73, 420–426 (2008). https://doi.org/10.1134/S0006297908040068

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297908040068

Key words

Navigation