Skip to main content
Log in

Nature and position of functional group on thiopurine substrates influence activity of xanthine oxidase — Enzymatic reaction pathways of 6-mercaptopurine and 2-mercaptopurine are different

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Xanthine oxidase-catalyzed hydroxylation reactions of the anticancer drug 6-mercaptopurine (6-MP) and its analog 2-mercaptopurine (2-MP) as well as 6-thioxanthine (6-TX) and 2-thioxanthine (2-TX) have been studied using UV-spectroscopy, high pressure liquid chromatography, photodiode array, and liquid chromatography-based mass spectral analysis. It is shown that 6-MP and 2-MP are oxidatively hydroxylated through different pathways. Enzymatic hydroxylation of 6-MP forms 6-thiouric acid in two steps involving 6-TX as the intermediate, whereas 2-MP is converted to 8-hydroxy-2-mercaptopurine as the expected end product in one step. Surprisingly, in contrast to the other thiopurines, enzymatic hydroxylation of 2-MP showed a unique hyperchromic effect at 264 nm as the reaction proceeded. However, when 2-TX is used as the substrate, it is hydroxylated to 2-thiouric acid. The enzymatic hydroxylation of 2-MP is considerably faster than that of 6-MP, while 6-TX and 2-TX show similar rates under identical reaction conditions. The reason why 2-MP is a better substrate than 6-MP and how the chemical nature and position of the functional groups present on the thiopurine substrates influence xanthine oxidase activity are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

e :

electron

2-MP:

2-mercaptopurine

6-MP:

6-mercaptopurine

8-OH-2-MP:

8-hydroxy-2-mercaptopurine

P max :

maximum level of product formed

PDA:

photodiode array

R t :

retention time

2-TX:

2-thioxanthine

6-TX:

6-thioxanthine

2-TUA:

2-thiouric acid

6-TUA:

6-thiouric acid

XOD:

xanthine oxidase

References

  1. Hille, R., and Nishino, T. (1995) FASEB J., 9, 995–1003.

    PubMed  CAS  Google Scholar 

  2. Escribano, J., Gracia-Canovas, F., and Gracia-Carmona, F. (1988) Biochem J., 254, 829–833.

    PubMed  CAS  Google Scholar 

  3. Ryan, M. G., Ratnam, K., and Hille, R. (1995) J. Biol. Chem., 270, 19209–19212.

    Article  PubMed  CAS  Google Scholar 

  4. Hille, R., Hagen, W. R., and Dunham, W. R. (1985) J. Biol. Chem., 260, 10569–10575.

    PubMed  CAS  Google Scholar 

  5. Hille, R. (1996) Chem. Rev., 96, 2757–2816.

    Article  PubMed  CAS  Google Scholar 

  6. Harris, C. M., Sanders, S. A., and Massey, V. (1999) J. Biol. Chem., 274, 4561–4569.

    Article  PubMed  CAS  Google Scholar 

  7. Hille, R. (1991) Biochemistry, 30, 8522–8529.

    Article  PubMed  CAS  Google Scholar 

  8. Porras, A. G., Olson, J. S., and Palmer, G. (1981) J. Biol. Chem., 256, 9096–9103.

    CAS  Google Scholar 

  9. Xia, M., Dempski, R., and Hille, R. (1999) J. Biol. Chem., 274, 3323–3330.

    Article  PubMed  CAS  Google Scholar 

  10. Kim, J. H., Ryan, M. G., Knaut, H., and Hille, R. (1996) J. Biol. Chem., 271, 6771–6780.

    Article  PubMed  CAS  Google Scholar 

  11. Rastelli, G., Castantino, L., and Albasini, A. (1997) J. Am. Chem. Soc., 119, 3007–3016.

    Article  CAS  Google Scholar 

  12. Zimm, S., Collins, J. M., O’Neill, D., Chabner, B. A., and Poplack, D. G. (1983) Clin. Pharmacol. Ther., 34, 810–817.

    Article  PubMed  CAS  Google Scholar 

  13. Relling, M. V., Hancock, M. L., Rivera, G. K., Sandlund, J. T., Ribeiro, R. C., Krynetski, E. Y., Pui, C., and Evans, W. E. (1999) J. Natl. Cancer Inst., 91, 2001–2008.

    Article  PubMed  CAS  Google Scholar 

  14. Venkatraman, G., Sharman, V. L., and Lee, H. A. (1990) J. Int. Med., 228, 69–71.

    Article  CAS  Google Scholar 

  15. Nakamura, M. (1991) J. Biochem., 110, 450–456.

    PubMed  CAS  Google Scholar 

  16. Tamta, H., Kalra, S., and Mukhopadhyay, A. K. (2005) Biochemistry (Moscow), 71, S49–S54.

    Article  CAS  Google Scholar 

  17. Tamta, H., Thilagavathi, R., Chakraborti, A. K., and Mukhopadhyay, A. K. (2005) J. Enz. Inh. Med. Chem., 20, 317–324.

    Article  CAS  Google Scholar 

  18. Tamta, H., Kalra, S., Anand, G. C. S., and Mukhopadhyay, A. K. (2005) J. Biol. Phys. Chem., 5, 89–99.

    CAS  Google Scholar 

  19. Hernandez, B., Orozco, M., and Luque, F. J. (1996) J. Comput.-Aided Mol. Design, 10, 535–544.

    Article  CAS  Google Scholar 

  20. Kim, J. H., Odutola, J. A., Popham, J., Jones, L., and Laven, S. (2001) J. Inorg. Biochem., 84, 145–150.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hemlata Tamta.

Additional information

Published in Russian in Biokhimiya, 2007, Vol. 72, No. 2, pp. 203–211.

Originally published in Biochemistry (Moscow) On-Line Papers in Press, as Manuscript BM06-209, January 21, 2007.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tamta, H., Kalra, S., Thilagavathi, R. et al. Nature and position of functional group on thiopurine substrates influence activity of xanthine oxidase — Enzymatic reaction pathways of 6-mercaptopurine and 2-mercaptopurine are different. Biochemistry Moscow 72, 170–177 (2007). https://doi.org/10.1134/S000629790702006X

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S000629790702006X

Key words

Navigation