Biochemistry (Moscow)

, Volume 72, Issue 1, pp 1–20 | Cite as

Photoaffinity labeling and its application in structural biology

  • E. L. Vodovozova


This review contains a brief consideration of some theoretical aspects of photoaffinity (photoreactive) labeling (PAL), and the most widely used photoreactive groups, such as arylazide, benzophenone, and 3-(trifluoromethyl)-3-phenyldiazirine, are characterized in comparison. Experimental methodology is described, including modern approaches of mass spectrometry for analysis of cross-linking products between the photoreactive probes and biomolecules. Examples of PAL application in diverse fields of structural biology during the last five-ten years are presented. Potential drug targets, transport processes, stereochemistry of interaction of G-protein-coupled receptors with ligands, as well as structural changes in nicotinic acetylcholine receptor are considered. Applications of photoaffinity ganglioside and phospholipid probes for studying biological membranes and of nucleotide probes in investigations of replicative and transcriptional complexes, as well as photoaffinity glycoconjugates for detecting carbohydrate-binding proteins are covered. In combination with modern techniques of instrumental analysis and computer-aided modeling, PAL remains the most important approach in studies on the organization of biological systems.

Key words

photoaffinity labeling ligand-binding sites photoreactive probes gangliosides nucleotides glycoconjugates 







corticotropin-releasing factor


dopamine protein transporter




electrospray ionization


G-protein-coupled receptor




ileal lipid-binding protein


liquid chromatography/mass spectrometry


matrix assisted laser desorption ionization


multiple drug resistance


mass spectrometry


tandem mass spectrometry


nicotinic acetylcholine receptor






photoaffinity labeling




squalene epoxidase


transmembrane domain




Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Knowles, J. K. (1972) Acc. Chem. Res., 5, 150–160.CrossRefGoogle Scholar
  2. 2.
    Bayley, H. (1983) in Laboratory Techniques in Biochemistry and Molecular Biology (Work, T. S., and Burdon, R. H., eds.) Vol. 12, Elsevier, Amsterdam-New York-Oxford.Google Scholar
  3. 3.
    Brunner, J. (1989) Meth. Enzymol., 172, 628–687.PubMedGoogle Scholar
  4. 4.
    Brunner, J. (1993) Ann. Rev. Biochem., 62, 483–514.PubMedCrossRefGoogle Scholar
  5. 5.
    Kotzyba-Hibert, F., Kapfer, I., and Goeldner, M. (1995) Angew. Chem., Int. Ed., 34, 1296–1312.CrossRefGoogle Scholar
  6. 6.
    Fleming, S. A. (1995) Tetrahedron, 51, 12479–12520.CrossRefGoogle Scholar
  7. 7.
    Hatanaka, Y., Nakayama, H., and Kanaoka, Y. (1996) Rev. Heteroatom Chem., 14, 213–243.Google Scholar
  8. 8.
    Dorman, G., and Prestwich, G. D. (1994) Biochemistry, 33, 5661–5673.PubMedCrossRefGoogle Scholar
  9. 9.
    Knoll, F., Kolter, T., and Sandhoff, K. (2000) Meth. Enzymol., 311, 568–600.PubMedCrossRefGoogle Scholar
  10. 10.
    Dorman, G., and Prestwich, G. D. (2000) Trends Biotechnol., 18, 64–77.PubMedCrossRefGoogle Scholar
  11. 11.
    Hatanaka, Y., and Sadakane, Y. (2002) Curr. Top. Med. Chem., 2, 271–288.PubMedCrossRefGoogle Scholar
  12. 12.
    Singh, A., Thornton, E. R., and Westheimer, F. H. (1962) J. Biol. Chem., 237, PC3006–PC3008.Google Scholar
  13. 13.
    Jahn, O., Eckart, K., Tezval, H., and Spiess, J. (2004) Analyt. Bioanalyt. Chem., 378, 1031–1036.CrossRefGoogle Scholar
  14. 14.
    Shacham, S., Marantz, Y., Bar-Haim, S., Kalid, O., Warshaviak, D., Avisar, N., Inbal, B., Heifetz, A., Fichman, M., Topf, M., Naor, Z., Noiman, S., and Becker, O. M. (2004) Proteins, 57, 51–86.PubMedCrossRefGoogle Scholar
  15. 15.
    Zhang, H., and Karlin, A. (1997) Biochemistry, 36, 15856–15864.PubMedCrossRefGoogle Scholar
  16. 16.
    Foucaud, B., Perret, P., Grutter, T., and Goeldner, M. (2001) Trends Pharmacol. Sci., 22, 170–173.PubMedCrossRefGoogle Scholar
  17. 17.
    Fleet, G. W. J., Porter, R. R., and Knowles, J. R. (1969) Nature, 224, 511–512.CrossRefGoogle Scholar
  18. 18.
    Smith, R. A. G., and Knowles, J. R. (1973) J. Am. Chem. Soc., 95, 5072–5073.PubMedCrossRefGoogle Scholar
  19. 19.
    Galardy, R. E., Craig, L. C., and Printz, M. P. (1973) Nature New Biol., 242, 127–128.PubMedGoogle Scholar
  20. 20.
    Chowdhry, V., Vaughan, R., and Westheimer, F. H. (1976) Proc. Natl. Acad. Sci. USA, 73, 1406–1408.PubMedCrossRefGoogle Scholar
  21. 21.
    Stoffel, W., Schtreiber, C., and Scheefers, H. (1978) Hoppe-Seyler’s Z. Physiol. Chem., 359, 923–931.PubMedGoogle Scholar
  22. 22.
    Brunner, J., Senn, H., and Richards, F. M. (1980) J. Biol. Chem., 255, 3313–3318.PubMedGoogle Scholar
  23. 23.
    Goeldner, M., and Hirth, C. (1980) Proc. Natl. Acad. Sci. USA, 77, 6439–6442.PubMedCrossRefGoogle Scholar
  24. 24.
    Nielsen, P. E., Hansen, J. B., Thomsen, T., and Burhardt, O. (1983) Experientia, 39, 1063–1072.CrossRefGoogle Scholar
  25. 25.
    Young, M. J. T., and Platz, M. S. (1989) Tetrahedron Lett., 30, 2199–2202.CrossRefGoogle Scholar
  26. 26.
    Goeldner, M., Hawkinson, J. E., and Casida, J. E. (1989) Tetrahedron Lett., 30, 823–826.CrossRefGoogle Scholar
  27. 27.
    Kolpashchikov, D. M., Zakharenko, A. L., Dezhurov, S. V., Rechkunova, N. I., Khodyreva, S. N., Degtyarev, S. Kh., Litvak, V. V., and Lavrik, O. I. (1999) Bioorg. Khim., 25, 129–136.PubMedGoogle Scholar
  28. 28.
    Turro, N. J. (1980) Ann. N. Y. Acad. Sci., 346, 1–17.CrossRefGoogle Scholar
  29. 29.
    Gritsan, N. P., Yuzawa, T., and Platz, M. S. (1997) J. Am. Chem. Soc., 119, 5059–5060.CrossRefGoogle Scholar
  30. 30.
    Lwowski, W. (1980) Ann. N. Y. Acad. Sci., 346, 491–500.CrossRefGoogle Scholar
  31. 31.
    Borden, W. T., Gritsan, N. P., Hadad, C. M., Karney, W. L., Kemnitz, C. R., and Platz, M. S. (2000) Acc. Chem. Res., 33, 765–771.PubMedCrossRefGoogle Scholar
  32. 32.
    Cai, S. X., Glenn, D. J., and Keana, J. F. W. (1992) J. Org. Chem., 57, 1299–1304.CrossRefGoogle Scholar
  33. 33.
    Platz, M., Admasu, A. S., Kwiatkowski, S., Crocker, P. J., Imai, N., and Watt, D. S. (1991) Bioconjugate Chem., 2, 337–341.CrossRefGoogle Scholar
  34. 34.
    Jahn, O., Hofmann, B. A., Brauns, O., Spiess, J., and Eckart, K. (2002) Int. J. Mass Spectrom., 214, 37–51.CrossRefGoogle Scholar
  35. 35.
    Hino, N., Okazaki, Y., Kobayashi, T., Hayashi, A., Sakamoto, K., and Yokoyama, S. (2005) Nature Meth., 2, 201–206.CrossRefGoogle Scholar
  36. 36.
    Farrelli, I. S., Toroney, R., Hazen, J. L., Mehl, R. A., and Chin, J. W. (2005) Nature Meth., 2, 377–384.CrossRefGoogle Scholar
  37. 37.
    Kage, R., Leeman, S. E., Krause, J. E., Costello, C. E., and Boyd, N. D. (1996) J. Biol. Chem., 271, 25797–25800.PubMedCrossRefGoogle Scholar
  38. 38.
    Bisello, A., Adams, A. E., Mierke, D. F., Pellegrini, M., Rosenblatt, M., Suva, L. J., and Chorev, M. (1998) J. Biol. Chem., 273, 22498–22505.PubMedCrossRefGoogle Scholar
  39. 39.
    Behar, V., Bisello, A., Rosenblatt, M., and Chorev, M. (1999) Endocrinology, 140, 4251–4261.PubMedCrossRefGoogle Scholar
  40. 40.
    Behar, V., Bisello, A., Bitan, G., Rosenblatt, M., and Chorev, M. (2000) J. Biol. Chem., 275, 9–17.PubMedCrossRefGoogle Scholar
  41. 41.
    Macdonald, D., Mierke, D. F., Li, H., Pellegrini, M., Sachais, B., Krause, J. E., Leeman, S. E., and Boyd, N. D. (2001) Biochemistry, 40, 2530–2539.PubMedCrossRefGoogle Scholar
  42. 42.
    Rihakova, L., Deraet, M., Auger-Messier, M., Perodin, J., Boucard, A. A., Guillemette, G., Leduc, R., Lavigne, P., and Escher, E. (2002) J. Recept. Signal Transduction Res., 22, 297–313.CrossRefGoogle Scholar
  43. 43.
    Clement, M., Martin, S. S., Beaulieu, M. E., Chamberland, C., Lavigne, P., Leduc, R., Guillemette, G., and Escher, E. (2005) J. Biol. Chem., 280, 27121–27129.PubMedCrossRefGoogle Scholar
  44. 44.
    Weber, P. J. A., and Becksickinger, A. G. (1997) J. Peptide Res., 49, 375–383.CrossRefGoogle Scholar
  45. 45.
    Tate, J. J., Persinger, J., and Bartholomew, B. (1998) Nucleic Acids Res., 26, 1421–1426.PubMedCrossRefGoogle Scholar
  46. 46.
    Gilbert, B. A., and Rando, R. R. (1995) J. Am. Chem. Soc., 117, 8061–8066.CrossRefGoogle Scholar
  47. 47.
    Hatanaka, Y., Hashimoto, M., and Kanaoka, Y. (1998) J. Am. Chem. Soc., 120, 453–454.CrossRefGoogle Scholar
  48. 48.
    Perodin, J., Deraet, M., Auger-Messier, M., Boucard, A. A., Rihakova, L., Beaulieu, M.-E., Lavigne, P., Parent, J.-L., Guillemette, G., Leduc, R., and Escher, E. (2002) Biochemistry, 41, 14348–14356.PubMedCrossRefGoogle Scholar
  49. 49.
    Ji, Z., Hadac, E. M., Henne, R. M., Patel, S. A., Lybrand, T. P., and Miller, L. J. (1997) J. Biol. Chem., 272, 24393–24401.PubMedCrossRefGoogle Scholar
  50. 50.
    Jahn, O., Tezval, H., Spiess, J., and Eckart, K. (2003) Int. J. Mass Spectrom., 228, 527–540.CrossRefGoogle Scholar
  51. 51.
    Li, C., Xu, W., Vadivel, S. K., Fan, P., and Makriyannis, A. (2005) J. Med. Chem., 48, 6423–6429.PubMedCrossRefGoogle Scholar
  52. 52.
    Palnitkar, S. S., Bin, B., Jimenez, L. S., Morimoto, H., Williams, P. G., Paul-Pletzer, K., and Parness, J. (1999) J. Med. Chem., 42, 1872–1880.PubMedCrossRefGoogle Scholar
  53. 53.
    Paul-Pletzer, K., Yamamoto, T., Ikemoto, N., Jimenez, L. S., Morimoto, H., Williams, P. G., Ma, J., and Parness, J. (2005) Biochem. J., 387, 905–909.PubMedCrossRefGoogle Scholar
  54. 54.
    Kramer, W., Girbig, F., Corsiero, D., Burger, K., Fahrenholz, F., Jung, C., and Muller, G. (2003) Biochim. Biophys. Acta, 1633, 13–26.PubMedGoogle Scholar
  55. 55.
    Kramer, W., Corsiero, D., Girbig, F., and Jahne, G. (2006) Biochim. Biophys. Acta — Biomembranes, 1758, 45–54.CrossRefGoogle Scholar
  56. 56.
    Kramer, W., Sauber, K., Baringhaus, K.-H., Kurz, M., Stengelin, S., Lange, G., Corsiero, D., Girbig, F., Konig, W., and Weyland, C. (2001) J. Biol. Chem., 276, 7291–7301.PubMedCrossRefGoogle Scholar
  57. 57.
    Lee, H. K., Zheng, Y. F., Xiao, X.-Y., Bai, M., Sakakibara, J., Ono, T., and Prestwich, G. D. (2004) Biochem. Biophys. Res. Commun., 315, 1–9.PubMedCrossRefGoogle Scholar
  58. 58.
    Ohgami, N., Ko, C. D., Thomas, M., Scott, P. M., Chang, C. C. Y., and Chang, T.-Y. (2004) Proc. Natl. Acad. Sci. USA, 101, 12473–12478.PubMedCrossRefGoogle Scholar
  59. 59.
    Wu, Z., Hasan, A., Liu, T., Teller, D. C., and Crabb, J. W. (2004) J. Biol. Chem., 279, 27357–27364.PubMedCrossRefGoogle Scholar
  60. 60.
    Borhan, B., Souto, M. L., Imai, H., Shichida, Y., and Nakanishi, K. (2000) Science, 288, 2209–2212.PubMedCrossRefGoogle Scholar
  61. 61.
    Demers, A., Mcnicoll, N., Febbraio, M., Servant, M., Marleau, S., Silverstein, R., and Ong, H. (2004) Biochem. J., 382, 417–424.PubMedCrossRefGoogle Scholar
  62. 62.
    Alqwai, O., Poelarends, G., Konings, W. N., and Georges, E. (2003) Biochem. Biophys. Res. Commun., 311, 696–701.PubMedCrossRefGoogle Scholar
  63. 63.
    Pleban, K., Kopp, S., Csaszar, E., Peer, M., Hrebicek, T., Rizzi, A., Ecker, G. F., and Chiba, P. (2005) Mol. Pharmacol., 67, 365–374.PubMedCrossRefGoogle Scholar
  64. 64.
    Vaughan, R. A., Parnas, M. L., Gaffaney, J. D., Lowe, M. J., Wirtz, S., Pham, A., Reed, B., Dutta, S. M., Murray, K. K., and Justice, B. J. (2005) J. Neurosci. Meth., 143, 33–40.CrossRefGoogle Scholar
  65. 65.
    Vaughan, R. A., Gaffaney, J. D., Lever, J. R., Reith, M. E. A., and Dutta, A. K. (2001) Mol. Pharmacol., 59, 1157–1164.PubMedGoogle Scholar
  66. 66.
    Dohlman, H. G., Caron, M. G., Strader, C. D., Amlaiky, N., and Lefkowitz, R. J. (1988) Biochemistry, 27, 1813–1817.PubMedCrossRefGoogle Scholar
  67. 67.
    Janovick, J. A., Haviv, F., Fitzpatrick, T. D., and Conn, P. M. (1993) Endocrinology, 133, 942–945.PubMedCrossRefGoogle Scholar
  68. 68.
    Kennedy, A. P., Mangum, K. C., Linden, J., and Wells, J. N. (1996) Mol. Pharmacol., 50, 789–798.PubMedGoogle Scholar
  69. 69.
    Li, Y. M., Marnerakis, M., Stimson, E. R., and Maggio, J. E. (1995) J. Biol. Chem., 270, 1213–1220.PubMedCrossRefGoogle Scholar
  70. 70.
    Boucard, A. A., Sauve, S. S., Guillemette, G., Escher, E., and Leduc, R. (2003) Biochem. J., 370, 829–838.PubMedCrossRefGoogle Scholar
  71. 71.
    Hein, L., Barsh, G. S., Pratt, R. E., Dzau, V. J., and Kobilka, B. K. (1995) Nature, 377, 744–747.PubMedCrossRefGoogle Scholar
  72. 72.
    Nikiforovich, G. V., and Marshall, G. R. (2001) Biochem. Biophys. Res. Commun., 286, 1204–1211.PubMedCrossRefGoogle Scholar
  73. 73.
    Boucard, A. A., Wilkes, B. C., Laporte, S. A., Escher, E., Guillemette, G., and Leduc, R. (2000) Biochemistry, 39, 9662–9670.PubMedCrossRefGoogle Scholar
  74. 74.
    Johannesson, P., Lindeberg, G., Johansson, A., Nikiforovich, G. V., Gogoll, A., Synnergren, B., Le Greves, M., Nyberg, F., Karlen, A., and Hallberg, A. (2002) J. Med. Chem., 45, 1767–1777.PubMedCrossRefGoogle Scholar
  75. 75.
    Yamano, Y., Ohyama, K., Kikyo, M., Sano, T., Nakagomi, Y., Inoue, Y., Nakamura, N., Morishima, I., Guo, K.-F., Hamakubo, T., and Inagami, T. (1995) J. Biol. Chem., 270, 14024–14030.PubMedCrossRefGoogle Scholar
  76. 76.
    Deraet, M., Rihakova, L., Boucard, A., Perodin, J., Sauve, S., Mathieu, A. P., Guillemette, G., Leduc, R., Lavigne, P., and Escher, E. (2002) Can. J. Physiol. Pharmacol., 80, 418–425.PubMedCrossRefGoogle Scholar
  77. 77.
    Fillion, D., Deraet, M., Holleran, B. J., and Escher, E. (2006) J. Med. Chem., 49, 2200–2209.PubMedCrossRefGoogle Scholar
  78. 78.
    Behar, V., Bisello, A., Rosenblatt, M., and Chorev, M. (1999) Endocrinology, 140, 4251–4261.PubMedCrossRefGoogle Scholar
  79. 79.
    Behar, V., Bisello, A., Bitan, G., Rosenblatt, M., and Chorev, M. (2000) J. Biol. Chem., 275, 9–17.PubMedCrossRefGoogle Scholar
  80. 80.
    Dong, M., Pinon, D. I., Cox, R. F., and Miller, L. J. (2004) J. Biol. Chem., 279, 1167–1175.PubMedCrossRefGoogle Scholar
  81. 81.
    Dong, M., Pinon, D. I., Cox, R. F., and Miller, L. J. (2004) J. Biol. Chem., 279, 31177–31182.PubMedCrossRefGoogle Scholar
  82. 82.
    Tan, Y. V., Couvineau, A., van Rampelbergh, J., and Laburthe, M. (2003) J. Biol. Chem., 278, 36531–36536.PubMedCrossRefGoogle Scholar
  83. 83.
    Tan, Y. V., Couvineau, A., and Laburthe, M. (2004) J. Biol. Chem., 279, 38889–38894.PubMedCrossRefGoogle Scholar
  84. 84.
    Pham, V. I., and Sexton, P. M. (2004) J. Pept. Sci., 10, 179–203.PubMedCrossRefGoogle Scholar
  85. 85.
    Assil, I. Q., Qi, L. J., Arai, M., Shomali, M., and Abou-Samra, A. B. (2001) Biochemistry, 40, 1187–1195.PubMedCrossRefGoogle Scholar
  86. 86.
    Klose, J., Fechner, K., Beyermann, M., Krause, E., Wendt, N., Bienert, M., Rudolph, R., and Rothemund, S. (2005) Biochemistry, 44, 1614–1623.PubMedCrossRefGoogle Scholar
  87. 87.
    Kraetke, O., Holeran, B., Berger, H., Escher, E., Bienert, M., and Beyermann, M. (2005) Biochemistry, 44, 15569–15577.PubMedCrossRefGoogle Scholar
  88. 88.
    Unwin, N. (2005) J. Mol. Biol., 346, 967–989.PubMedCrossRefGoogle Scholar
  89. 89.
    Grutter, T., and Changeux, J. P. (2001) Trends Biochem. Sci., 26, 459–463.PubMedCrossRefGoogle Scholar
  90. 90.
    Mourot, A., Grutter, T., Goeldner, M., and Kotzyba-Hibert, F. (2006) ChemBioChem, 7, 570–583.PubMedCrossRefGoogle Scholar
  91. 91.
    Brejc, K., van Dijk, W. J., Klaassen, R. V., Schuurmans, M., van der Oost, J., Smit, A. B., and Sixma, T. K. (2001) Nature, 411, 269–276.PubMedCrossRefGoogle Scholar
  92. 92.
    Galzi, J. L., Revah, F., Black, D., Goeldner, M., Hirth, C., and Changeux, J. P. (1990) J. Biol. Chem., 265, 10430–10437.PubMedGoogle Scholar
  93. 93.
    Grutter, T., Ehret-Sabatier, L., Kotzyba-Hibert, F., and Goeldner, M. (2000) Biochemistry, 39, 3034–3043.PubMedCrossRefGoogle Scholar
  94. 94.
    Middleton, R. E., and Cohen, J. B. (1991) Biochemistry, 30, 6987–6997.PubMedCrossRefGoogle Scholar
  95. 95.
    Kotzyba-Hibert, F., Grutter, T., and Goeldner, M. (1999) Mol. Neurobiol., 20, 45–59.PubMedGoogle Scholar
  96. 96.
    Addona, G. H., Kloczewiak, M. A., and Miller, K. W. (1999) Analyt. Biochem., 267, 135–140.PubMedCrossRefGoogle Scholar
  97. 97.
    Leite, J. F., Blanton, M. P., Shahgholi, M., Dougherty, D. A., and Lester, H. A. (2003) Proc. Natl. Acad. Sci. USA, 100, 13054–13059.PubMedCrossRefGoogle Scholar
  98. 98.
    Galzi, J., Revah, F., Bouet, F., Menez, A., Goeldner, M., Hirth, C., and Changeux, J. (1991) Proc. Natl. Acad. Sci. USA, 88, 5051–5055.PubMedCrossRefGoogle Scholar
  99. 99.
    Grutter, T., Bertrand, S., Kotzyba-Hibert, F., Bertrand, D., and Goeldner, M. (2002) ChemBioChem, 3, 652–658.PubMedCrossRefGoogle Scholar
  100. 100.
    Mourot, A., Rodrigo, J., Kotzyba-Hibert, F., Bertrand, S., Bertrand, D., and Goeldner, M. (2006) Mol. Pharmacol., 69, 452–461.PubMedCrossRefGoogle Scholar
  101. 101.
    Mordvintsev, D. Yu., Polyak, Ya. L., Levtsova, O. V., Tourleigh, Ye. V., Kasheverov, I. E., Shaitan, K. V., Utkin, Yu. N., and Tsetlin, V. I. (2005) Comput. Biol. Chem., 29, 398–411.PubMedCrossRefGoogle Scholar
  102. 102.
    Utkin, Y. N., Hatanaka, Y., Franke, P., Machold, J., Hucho, F., and Tsetlin, V. I. (1995) J. Protein Chem., 4, 197–203.CrossRefGoogle Scholar
  103. 103.
    Ziebell, M. R., Nirthanan, S., Husain, S. S., Miller, K. W., and Cohen, J. B. (2004) J. Biol. Chem., 279, 17640–17649.PubMedCrossRefGoogle Scholar
  104. 104.
    Gupta, C. M., Radhakrishnan, R., and Khorana, H. G. (1977) Proc. Natl. Acad. Sci. USA, 74, 4315–4319.PubMedCrossRefGoogle Scholar
  105. 105.
    Wiegandt, H. (1985) in Gangliosides. New Comprehensive Biochemistry (Neuberger, A., and van Deenen, L. L. M., eds.) Vol. 10, Elsevier, Amsterdam, pp. 199–260.Google Scholar
  106. 106.
    Hakomori, S.-I. (1990) J. Biol. Chem., 265, 18713–18716.PubMedGoogle Scholar
  107. 107.
    Yates, A. J., and Rampersaud, A. (1998) Ann. N. Y. Acad. Sci., 845, 57–71.PubMedCrossRefGoogle Scholar
  108. 108.
    Vanmeer, G., and Lisman, Q. (2002) J. Biol. Chem., 277, 25855–25858.CrossRefGoogle Scholar
  109. 109.
    Bektas, M., and Spiegel, S. (2003) Glycoconjugate J., 20, 39–47.CrossRefGoogle Scholar
  110. 110.
    Anderson, R. G. W. (1998) Annu. Rev. Biochem., 67, 199–225.PubMedCrossRefGoogle Scholar
  111. 111.
    Helms, J. B., and Zurzolo, C. (2004) Traffic, 5, 247–254.PubMedCrossRefGoogle Scholar
  112. 112.
    Fra, M. A., Masserini, M., Palestini, P., Sonnino, S., and Simons, K. (1995) FEBS Lett., 375, 11–14.PubMedCrossRefGoogle Scholar
  113. 113.
    Mauri, L., Prioni, S., Loberto, N., Chigorno, V., Prinetti, A., and Sonnino, S. (2004) Glycoconjugate J., 20, 11–23.CrossRefGoogle Scholar
  114. 114.
    Sonnino, S., Chirgorno, V., Acquotti, D., Pitto, M., Kirchner, G., and Tettamanti, G. (1989) Biochemistry, 28, 77–84.PubMedCrossRefGoogle Scholar
  115. 115.
    Prinetti, A., Marano, N., Prioni, S., Chigorno, V., Mauri, L., Casellato, R., Tettamanti, G., and Sonnino, S. (2000) Glycoconjugate J., 17, 223–232.CrossRefGoogle Scholar
  116. 116.
    Loberto, N., Prioni, S., Prinetti, A., Ottico, E., Chigorno, V., Karagogeos, D., and Sonnino, S. (2003) J. Neurochem., 85, 224–233.PubMedCrossRefGoogle Scholar
  117. 117.
    Prioni, S., Mauri, L., Loberto, N., Casellato, R., Chigorno, V., Karagogeos, D., Prinetti, A., and Sonnino, S. (2004) Glycoconjugate J., 21, 461–470.CrossRefGoogle Scholar
  118. 118.
    Palestini, P., Pitto, M., Tedeschi, G., Ferraretto, A., Parenti, M., Brunner, J., and Masserini, M. (2000) J. Biol. Chem., 275, 9978–9985.PubMedCrossRefGoogle Scholar
  119. 119.
    Wendeler, M., Hoernschemeyer, J., Hoffmann, D., Kolter, T., Schwarzmann, G., and Sandhoff, K. (2004) Eur. J. Biochem., 271, 614–627.PubMedCrossRefGoogle Scholar
  120. 120.
    Shapiro, R. E., Specht, C. D., Collins, B. E., Woods, A. S., Cotter, R. J., and Schpaar, R. L. (1997) J. Biol. Chem., 272, 30380–30386.PubMedCrossRefGoogle Scholar
  121. 121.
    Weber, T., and Brunner, J. (1995) J. Am. Chem. Soc., 117, 3084–3095.CrossRefGoogle Scholar
  122. 122.
    Durrer, P., Gaudin, Y., Ruigrok, R. W. H., Graf, R., and Brunner, J. (1995) J. Biol. Chem., 270, 17575–17581.PubMedCrossRefGoogle Scholar
  123. 123.
    Durrer, P., Galli, C., Hoenke, S., Corti, C., Gluck, R., Vorherr, T., and Brunner, J. (1996) J. Biol. Chem., 271, 13417–13421.PubMedCrossRefGoogle Scholar
  124. 124.
    Janssen, M. J. F. W., Voorst, F., Ploeger, G. E. J., Larsen, P. M., Larsen, M. R., Kroon, A. I. P. M., and Kruijff, B. (2002) Biochemistry, 41, 5702–5711.PubMedCrossRefGoogle Scholar
  125. 125.
    Vodovozova, E. L., Tsibizova, E. V., and Molotkovsky, J. G. (2001) J. Chem. Soc., Perkin Trans. 1, No. 18, 2221–2228.Google Scholar
  126. 126.
    Zaitseva, L. G., Ovchinnikova, T. V., Vodovozova, E. L., Molotkovsky, J. G., Polyakov, N. B., Titov, M. I., Esipov, S. E., and Grinkevich, V. A. (2002) Bioorg. Khim., 28, 411–425.PubMedGoogle Scholar
  127. 127.
    Delfino, J. M., Schtreiber, S. L., and Richards, M. F. (1993) J. Am. Chem. Soc., 115, 3458–3474.CrossRefGoogle Scholar
  128. 128.
    Ogawa, Y., Hahn, W., Garnier, P., Higashi, N., Massotte, D., Metz-Boutigue, M.-H., Rousseau, B., Sunamoto, J., Ourisson, G., and Nakatani, Y. (2001) Angew. Chem. Int. Ed., 40, 944–946.CrossRefGoogle Scholar
  129. 129.
    Zegers, M. M. P., Kok, J. W., and Hoekstra, D. (1997) Biochem. J., 328, 489–498.PubMedGoogle Scholar
  130. 130.
    Chaudhary, A., Chen, J., Gu, Q.-M., Witke, W., Kwiatkowski, D. J., and Prestwich, G. D. (1998) Chem. Biol., 5, 273–281.PubMedCrossRefGoogle Scholar
  131. 131.
    Tall, E., Dorman, G., Garcia, P., Runnels, L., Shah, S., Chen, J., Profit, A., Gu, Q.-M., Chaudhary, A., Prestwich, G. D., and Rebecchi, M. J. (1997) Biochemistry, 36, 7239–7248.PubMedCrossRefGoogle Scholar
  132. 132.
    Giraldo, A. M. V., Castello, P. R., Flechaa, F. L. G., Moeller, J. V., Delfino, J. M., and Rossi, J. P. F. C. (2006) FEBS Lett., 580, 607–612.CrossRefGoogle Scholar
  133. 133.
    Persinger, J., and Bartholomew, B. (1996) J. Biol. Chem., 271, 33039–33046.PubMedCrossRefGoogle Scholar
  134. 134.
    Knorre, D. G., Kudryashova, N. V., and Lavrik, O. I. (1998) Uspekhi Khim., 67, 486–502.Google Scholar
  135. 135.
    Zakharenko, A. L., Khodyreva, S. N., Rechkunova, N. I., Safronov, I. V., Pyshnyi, D. V., Degtyarev, S. Kh., and Lavrik, O. I. (1998) Biochemistry (Moscow), 63, 929–934.Google Scholar
  136. 136.
    Lavrik, O. I., Nasheuer, H. P., Weisshart, K., Wold, M. S., Prasad, R., Beard, W. A., Wilson, S. H., and Favre, A. (1998) Nucleic Acids Res., 26, 602–607.PubMedCrossRefGoogle Scholar
  137. 137.
    Kolpashchikov, D. V., Ivanova, T. M., Boghachev, V. S., Nasheuer, H. P., Weisshart, K., Favre, A., Pestryakov, P. E., and Lavrik, O. I. (2000) Bioconjug. Chem., 11, 445–451.PubMedCrossRefGoogle Scholar
  138. 138.
    Lavrik, O. I., Kolpashchikov, D. V., Weisshart, K., Nasheuer, H. P., Khodyreva, S. N., and Favre, A. (1999) Nucleic Acids Res., 27, 4235–4240.PubMedCrossRefGoogle Scholar
  139. 139.
    Kolpashchikov, D. V., Khodyreva, S. N., Khlimankov, D. Y., Wold, M. S., Favre, A., and Lavrik, O. I. (2001) Nucleic Acids Res., 29, 373–379.PubMedCrossRefGoogle Scholar
  140. 140.
    Lebedeva, N. A., Rechkunova, N. I., Dezhurov, S. V., Degtyarev, S. Kh., and Lavrik, O. I. (2004) Bioorg. Khim., 30, 369–374.PubMedGoogle Scholar
  141. 141.
    Lavrik, O. I., Prasad, R., Sobol, R. W., Horton, J. K., Ackerman, E. J., and Wilson, S. H. (2001) J. Biol. Chem., 276, 25541–25548.PubMedCrossRefGoogle Scholar
  142. 142.
    Dezhurov, S. V., Khodyreva, S. N., Plekhanova, E. S., and Lavrik, O. I. (2005) Bioconjug. Chem., 16, 215–222.PubMedCrossRefGoogle Scholar
  143. 143.
    Dyrkheeva, N. S., Khodyreva, S. N., Sukhanova, M. V., Safronov, I. V., Dezhurov, S. V., and Lavrik, O. I. (2006) Biochemistry (Moscow), 71, 200–210.CrossRefGoogle Scholar
  144. 144.
    Mal’tseva, E. A., Rechkunova, N. I., Petruseva, I. O., Sil’nikov, V. N., Vermeulen, V., and Lavrik, O. I. (2006) Biochemistry (Moscow), 71, 270–278.CrossRefGoogle Scholar
  145. 145.
    Sverdlov, E. D., and Tsarev, S. A. (1980) Bioorg. Khim., 6, 1110–1113.Google Scholar
  146. 146.
    Godovikova, T. S., Berezovskii, M. V., and Knorre, D. G. (1995) Bioorg. Khim., 21, 858–867.PubMedGoogle Scholar
  147. 147.
    Godovikova, T. S., Knorre, V. D., Maksakova, G. A., and Sil’nikov, V. N. (1996) Bioconj. Chem., 7, 343–348.CrossRefGoogle Scholar
  148. 148.
    Knorre, D. G., Kudryashova, N. V., Popova, T. V., Shakirov, M. M., Mal’shakova, V. S., Shpenev, O. E., Savinkova, L. K., Serebryakova, M. V., and Godovikova, T. S. (2005) Bioorg. Khim., 31, 372–384.Google Scholar
  149. 149.
    Gabius, H.-J., Siebert, H.-C., Andre, S., Jimenez-Barbero, J., and Rudiger, H. (2004) ChemBioChem., 5, 740–764.PubMedCrossRefGoogle Scholar
  150. 150.
    Lauc, G., Flogel, M., Diehl-Seifert, B., Schroder, H. C., and Muller, W. E. G. (1994) Glycoconj. J., 11, 541–549.PubMedCrossRefGoogle Scholar
  151. 151.
    Lauc, G., Lee, R. T., Dumic, J., and Lee, Y. C. (2000) Glycobiology, 10, 357–364.PubMedCrossRefGoogle Scholar
  152. 152.
    Hashimoto, M., Yang, J., and Holman, G. D. (2001) ChemBioChem., 2, 52–59.PubMedCrossRefGoogle Scholar
  153. 153.
    Ballell, L., Alink, K. J., Slijper, M., Versluis, C., Liskamp, R. M. J., and Pieters, R. J. (2005) ChemBioChem., 6, 291–295.PubMedCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2007

Authors and Affiliations

  • E. L. Vodovozova
    • 1
  1. 1.Shemyakin and Ovchinnikov Institute of Bioorganic ChemistryRussian Academy of SciencesMoscowRussia

Personalised recommendations