Advertisement

Biochemistry (Moscow)

, Volume 71, Supplement 1, pp S49–S54 | Cite as

Biochemical characterization of some pyrazolopyrimidine-based inhibitors of xanthine oxidase

  • Hemlata Tamta
  • Sukirti Kalra
  • Anup K. MukhopadhyayEmail author
Article

Abstract

Inhibition of xanthine oxidase-catalyzed conversion of xanthine to uric acid by various pyrazolopyrimidine-based inhibitors (allopurinol derivatives) was evaluated and compared with the standard inhibitor allopurinol. Three compounds out of the seven compounds used in the study were found to be reasonably good inhibitors of xanthine oxidase (XO). 4-Amino-6-mercaptopyrazolo-3,4-d-pyrimidine was found to be the most potent inhibitor of XO (IC50=0.600±0.009 µM). 4-Mercapto-1H-pyrazolo-3,4-d-pyrimidine (IC50=1.326±0.013 µM) and 4-amino-6-hydroxypyrazolo-3,4-d-pyrimidine (IC50=1.564±0.065 µM) also showed inhibitory activity comparable to that of allopurinol (IC50 = 0.776 ± 0.012 µM). All three compounds showed competitive type of inhibition with comparable Ki values. Induction of the electron transfer reaction catalyzed by XO in the presence of these compounds monitored as reduction of 2,6-dichlorophe nolindophenol (DCPIP) revealed that electron transfer by 4-amino-6-mercaptopyrazolo-3,4-d-pyrimidine is comparable to that obtained by allopurinol or xanthine. However, 4-mercapto-1H-pyrazolo-3,4-d-pyrimidine and 4-amino-6-hydroxypyrazolo-3,4-d-pyrimidine did not show DCPIP reduction. On the other hand, enzymatic reduction of cytochrome c in the presence of the three compounds was found to be insignificant and much less in comparison to allopurinol and xanthine. Therefore, both 4-amino-6-hydroxypyrazolo-3,4-d-pyrimidine and 4-mercapto-1H-pyrazolo-3,4-d-pyrimidine displayed the inhibitory property and also did not produce XO-mediated reactive oxygen species (ROS). Since 4-mercapto-1H-pyrazolo-3,4-d-pyrimidine was found to have some toxicity, the effect of 4-amino-6-hydroxypyrazolo-3,4-d-pyrimidine on the enzymatic formation of uric acid and ROS was investigated and it was found that this compound inhibited enzymatic generation of both uric acid and ROS. It can be noted that the standard inhibitor, allopurinol, inhibits uric acid formation but produces ROS.

Key words

two-electron reduction one-electron reduction competitive inhibition IC50 4-amino-6-mercaptopyrazolo-3,4-d-pyrimidine 4-mercapto-1H-pyrazolo-3,4-d-pyrimidine 4-amino-6-hydroxypyrazolo-3,4-d-pyrimidine allopurinol xanthine xanthine oxidase 

Abbreviations

XO

xanthine oxidase

DCPIP

2,6-dichlorophenolindophenol

ROS

reactive oxygen species

References

  1. 1.
    Hille, R., and Nishino, T. (1995) FASEB J., 9, 995–1003.PubMedGoogle Scholar
  2. 2.
    Krenitsky, T. A., Spector, T., and Hall, W. W. (1986) Arch. Biochem. Biophys., 247, 108–119.CrossRefPubMedGoogle Scholar
  3. 3.
    Rodnan, G. P. (1982) Bull. Rheum. Dis., 32, 43–53.PubMedGoogle Scholar
  4. 4.
    McCord, J. M. (1985) N. Engl. J. Med., 312, 159–163.PubMedGoogle Scholar
  5. 5.
    Nakamura, M. (1991) J. Biochem. (Tokyo), 110, 450–456.Google Scholar
  6. 6.
    Massey, V., Komai, H., Palmer, G., and Elion, G. B. (1970) J. Biol. Chem., 245, 2837–2844.PubMedGoogle Scholar
  7. 7.
    Spector, T., and Johns, D. G. (1970) J. Biol. Chem., 245, 5079–5085.PubMedGoogle Scholar
  8. 8.
    Oettl, K., and Reibnegger, G. (1999) Biochim. Biophys. Acta, 1430, 387–395.PubMedGoogle Scholar
  9. 9.
    Okamoto, K., Eger, B. T., Nishino, T., Kondo, S., and Pai, E. F. (2003) J. Biol. Chem., 278, 1848–1855.PubMedGoogle Scholar
  10. 10.
    Ishibuchi, S., Morimoto, H., Oe, T., Ikebe, T., Inoue, H., Fukunari, A., Kamezawa, M., Yamada, I., and Naka, Y. (2001) Bioorg. Med. Chem. Lett., 11, 879–882.CrossRefPubMedGoogle Scholar
  11. 11.
    Okamoto, K., Matsumoto, K., Hille, R., Eger, B. T., Pai, E. F., and Nishino, T. (2004) Proc. Natl. Acad. Sci. USA, 101, 7931–7936.CrossRefPubMedGoogle Scholar
  12. 12.
    Lin, C. M., Chen, C. S., Chen, C. T., Liang, Y. C., and Lin, J. K. (2002) Biochem. Biophys. Res. Commun., 294, 167–172.CrossRefPubMedGoogle Scholar
  13. 13.
    Van Hoom, D. E., Nijveldt, R. J., van Leeuwen, P. A., Hofman, Z., M’Rabet, L., De Bont, D. B., and van Norren, K. (2002) Eur. J. Pharmacol., 451, 111–118.Google Scholar
  14. 14.
    Tamta, H., Thilagavathi, R., Chakraborti, A. K., and Mukhopadhyay, A. K. (2005) J. Enzyme Inhibition Med. Chem., 20, 317–324.Google Scholar
  15. 15.
    Escribano, J., Gracia-Canovas, F., and Gracia-Carmona, F. (1988) Biochem. J., 254, 829–833.PubMedGoogle Scholar
  16. 16.
    Godner, B. L. J., Doel, J. J., Goult, T. A., Eisenthal, R., and Harrison, R. (2001) Biochem. J., 358, 325–333.Google Scholar
  17. 17.
    Hodges, G. R., Young, M. J., Paul, T., and Ingold, K. U. (2000) Free Rad. Biol. Med., 29, 434–441.CrossRefPubMedGoogle Scholar
  18. 18.
    Liochev, S. I., and Fridovich, I. (2002) J. Biol. Chem., 277, 34674–34678.CrossRefPubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2006

Authors and Affiliations

  • Hemlata Tamta
    • 1
  • Sukirti Kalra
    • 1
  • Anup K. Mukhopadhyay
    • 1
    Email author
  1. 1.Department of BiotechnologyNational Institute of Pharmaceutical Education and Research, Sector 67, Phase X, S. A. S NagarMohali, PunjabIndia

Personalised recommendations