Skip to main content
Log in

Ion-exchange properties of cell walls of Spinacia oleracea L. roots under different environmental salt conditions

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Ion-exchange properties of the polymeric matrix of cell walls isolated from roots of 55-day-old Spinacia oleracea L. (Matador cv.) plants grown in nutrient solution in the presence of 0.5, 150, and 250 mM NaCl and from roots of Suaeda altissima L. Pall plants of the same age grown in the presence of 0.5 and 250 mM NaCl were studied. The ion-exchange capacity of the spinach cell walls was determined at pH values from 2 to 12 and different ionic strength of the solution (10 and 250 mM NaCl). In the structure of the root cell walls, four types of ionogenic groups were found: amine, two types of carboxyl (the first being galacturonic acid residue), and phenolic groups. The content of each type of group and their ionization constants were evaluated. The ion-exchange properties of spinach and the halophyte Suaeda altissima L. Pall were compared, and the qualitative composition of the ion-exchange groups in the cell walls of roots of these plants appeared to be the same and not depend on conditions of the root nutrition. The content of carboxyl groups of polygalacturonic acid changed in the cell walls of the glycophyte and halophyte depending on the salt concentration in the medium. These changes in the composition of functional groups of the cell wall polymers seemed to be a response of these plants to salt and were more pronounced in the halophyte. A sharp increase in the NaCl concentration in the medium caused a decrease in pH in the extracellular water space as a result of exchange reactions between sodium ions entering from the external solution and protons of carboxyl groups of the cell walls. The findings are discussed from the standpoint of involvement of root cell walls of different plant species in response to salinity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cosgrove, D. J., and Li, Z.-C. (1993) Plant Physiol., 103, 1321–1328.

    PubMed  CAS  Google Scholar 

  2. Carpita, N. C., and Gibeaut, D. (1993) Plant J., 3, 1–30.

    Article  PubMed  CAS  Google Scholar 

  3. Sharova, E. I. (2004) Cell Wall of Plants [in Russian], St. Petersburg University Publishers, St. Petersburg.

    Google Scholar 

  4. Hahn, M. G., Bucheli, P., Cervone, F. C., Doares, S. H., O’Neill, R. A., Darvill, A. G., and Albersheim, P. (1989) in Plant-Microbe Interactions. Molecular and Genetic Perspectives (Kosuge, T., and Nester, E. W., eds.) Vol. 3, Academic Press, NY, pp. 131–181.

    Google Scholar 

  5. Zabotin, A. I., Barysheva, T. S., and Zabotina, O. A. (1995) Dokl. Ros. Akad. Nauk, 343, 567–570.

    CAS  Google Scholar 

  6. Vance, C. P., Kirk, T. S., and Sherwood, R. T. (1980) Annu. Rev. Phytopathol., 18, 259–288.

    Article  CAS  Google Scholar 

  7. Gorshkova, T. A. (1997) Metabolism of Polysaccharides of Plant Cell Wall: Author’s abstract of Doctoral (Biology) dissertation [in Russian], Institute of Plant Physiology, Russian Academy of Sciences, Moscow.

    Google Scholar 

  8. Meychik, N. R., Nikolaeva, J. I., and Yermakov, I. P. (2005) Plant Soil, 277, 163–174.

    Article  CAS  Google Scholar 

  9. Bigot, J., and Binet, P. (1986) Can. J. Bot., 64, 955–958.

    Google Scholar 

  10. Robinson, S. P., and Dountov, S. D. (1985) Austral. J. Plant Physiol., 12, 471–479.

    Article  CAS  Google Scholar 

  11. Meychik, N. R., Yermakov, I. P., and Savvateeva, M. V. (1999) Fiziol. Rast., 46, 742–747.

    Google Scholar 

  12. Meychik, N. R., and Yermakov, I. P. (2001) Plant Soil, 234, 181–193.

    Article  CAS  Google Scholar 

  13. Cheronis, N. D., and Ma, T. S. (1973) Micro-and Semimicromethods of Organic Functional Analysis [in Russian], Khimiya, Moscow.

    Google Scholar 

  14. Gregor, H. P., Luttinger, L. D., and Loeble, E. M. (1954) J. Amer. Chem. Soc., 76, 5879–5880.

    Article  CAS  Google Scholar 

  15. Leikin, Yu. A., Meychik, N. R., and Solov’ev, V. K. (1978) Zh. Fiz. Khim., 52, 1420–1424.

    CAS  Google Scholar 

  16. Gelferich, F. (1962) Ionites [Russian translation], Inostrannaya Literatura, Moscow.

    Google Scholar 

  17. Richter, C., and Dainty, J. (1989) Can. J. Bot., 67, 451–459.

    CAS  Google Scholar 

  18. Cassab, G. I., and Varner, J. E. (1988) Ann. Rev. Plant Physiol. Plant Mol. Biol., 39, 321–353.

    Article  CAS  Google Scholar 

  19. Cassab, G. I. (1998) Ann. Rev. Plant Physiol. Plant Mol. Biol., 49, 281–309.

    Article  CAS  Google Scholar 

  20. Talmadge, K. W., Keegstra, K., Bauer, W. D., and Albersheim, P. (1973) Plant Physiol., 51, 158–173.

    Article  PubMed  CAS  Google Scholar 

  21. Carpita, N., and McCann, M. (2000) in Biochemistry and Molecular Biology of Plants (Buchanan, B., Gruissem, W., and Jones, R., eds.) American Society for Plant Physiology, Rockville, pp. 52–108.

    Google Scholar 

  22. Albert, A., and Sargent, E. (1964) Ionization Constants for Acids and Bases [Russian translation], Khimiya, Leningrad.

    Google Scholar 

  23. Shataeva, L. A., Kuznetsova, N. N., and El’kin, G. E. (1979) Carboxyl Ionites in Biology [in Russian], Nauka, Leningrad.

    Google Scholar 

  24. Ritchie, R. J., and Larkum, A. W. D. (1982) J. Exp. Bot., 132, 125–139.

    Google Scholar 

  25. Starrach, N., Flach, D., and Mayer, W.-E. (1985) J. Plant Physiol., 120, 441–455.

    CAS  Google Scholar 

  26. Freundling, C., Starrach, N., Flach, D., Gradmann, D., and Mayer, W.-E. (1988) Planta, 175, 193–203.

    Article  Google Scholar 

  27. Libinson, G. S. (1969) Physicochemical Properties of Carboxyl Cationites [in Russian], Nauka, Moscow.

    Google Scholar 

  28. Ktitorova, I. N., and Skobeleva, O. V. (1999) Fiziol. Rast., 46, 239–245.

    Google Scholar 

  29. Steudle, E., and Peterson, C. A. (1998) J. Exp. Bot., 49, 775–788.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. R. Meychik.

Additional information

Original Russian Text © N. R. Meychik, Yu. I. Nikolaeva, I. P. Yermakov, 2006, published in Biokhimiya, 2006, Vol. 71, No. 7, pp. 961–971.

Originally published in Biochemistry (Moscow) On-Line Papers in Press, as Manuscript BM06-016, May 14, 2006.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meychik, N.R., Nikolaeva, Y.I. & Yermakov, I.P. Ion-exchange properties of cell walls of Spinacia oleracea L. roots under different environmental salt conditions. Biochemistry (Moscow) 71, 781–789 (2006). https://doi.org/10.1134/S000629790607011X

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S000629790607011X

Key words

Navigation