Advertisement

Biochemistry (Moscow)

, Volume 71, Issue 6, pp 667–677 | Cite as

pH-dependent regulation of myeloperoxidase activity

  • I. I. VlasovaEmail author
  • J. Arnhold
  • A. N. Osipov
  • O. M. Panasenko
Article

Abstract

The balance between peroxidase and chlorinating activities of myeloperoxidase (MPO) is very important for the enhancement of antimicrobial action and prevention of damage caused by hypochlorite. In the present paper, the peroxidase and chlorinating activities have been studied at various pH values. The possibility of using neutrophil protein solution for the evaluation of MPO activity has been demonstrated. It is shown that at neutral pH MPO had higher affinity to peroxidase substrate guaiacol: at pH 7.4, chloride ions did not compete with guaiacol up to the concentration of 150 mM. At acidic pH, chlorinating activity of MPO dominates: only hypochlorite production can be detected at equal chloride and guaiacol concentrations of 15 mM. However, horseradish peroxidase does not exhibit any difference in activity in the presence of chloride ions even at acidic pH values. It was demonstrated by MALDI-TOF mass-spectrometry that the amount of hypochlorite produced is sufficient to modify phospholipids (with formation of Cl-and Br-hydrins and lyso-derivatives) only at acidic pH (5.0). Thus, in the presence of phenolic peroxidase substrate, MPO chlorinating activity can be displayed at acidic pH only. It can lead to elimination of hypochlorite production in normal tissues at neutral pH (7.4) and its enhancement in phagosomes where the pH range is 4.7–6.0.

Key words

myeloperoxidase pH hypochlorite peroxidase activity chlorinating activity neutrophils 

Abbreviations

CTAB

cetyltrimethylammonium bromide

DEANOate

1,1-diethyl-2-hydroxy-2-nitrosohydrazine

DTNB

5,5′-dithio-2-nitrobenzoic acid

HRP

horseradish peroxidase

MALDI-TOF/MS

matrix assisted laser desorption/ionization time-of-flight mass spectrometry

MCD

monochlorodimedone

MPO

myeloperoxidase

NP

neutrophil proteins

PAPC

1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine

POPC

1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine

TNB

5-thio-2-nitrobenzoic acid

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kettel, A. J., and Winterbourn, C. C. (1997) Redox Rep., 3, 3–15.Google Scholar
  2. 2.
    Klebanoff, S. J. (2005) J. Leukoc. Biol., 77, 598–625.PubMedCrossRefGoogle Scholar
  3. 3.
    Arnhold, Yu. (2004) Biochemistry (Moscow), 69, 4–9.CrossRefGoogle Scholar
  4. 4.
    Hampton, M. B., Kettle, A. J., and Winterbourn, C. C. (1998) Blood, 92, 3007–3017.PubMedGoogle Scholar
  5. 5.
    Jantschko, W., Furtmuller, P. G., Zederbauer, M., Neugschwandtner, K., Lehner, I., Jakopitsch, C., Arnhold, J., and Obinger, C. (2005) Biochem. Pharmacol., 69, 1149–1157.PubMedCrossRefGoogle Scholar
  6. 6.
    Bakkenist, A. R. J., de Boer, J. E. G., Plat, H., and Wever, R. (1980) Biochim. Biophys. Acta, 613, 337–348.PubMedGoogle Scholar
  7. 7.
    Zgliczynski, J. M., Selvaraj, R. J., Paul, B. B., Stelmaszynska, T., Poskitt, P. K. F., and Sbarra, A. J. (1977) Proc. Soc. Exp. Med. Biol., 154, 418–422.Google Scholar
  8. 8.
    Furtmuller, P. G., Burner, U., and Obinger, C. (1998) Biochemistry, 37, 17923–17930.PubMedCrossRefGoogle Scholar
  9. 9.
    Marquez, L. A., and Dunford, H. B. (1995) J. Biol. Chem., 270, 30434–30440.PubMedCrossRefGoogle Scholar
  10. 10.
    Heinecke, J. W., Li, W., Daehnke, H. L., 3rd, and Goldstein, J. A. (1993) J. Biol. Chem., 268, 4069–4077.PubMedGoogle Scholar
  11. 11.
    Podrez, E. A., Abu-Soud, H. M., and Hazen, S. L. (2000) Free Rad. Biol. Med., 28, 1717–1725.PubMedCrossRefGoogle Scholar
  12. 12.
    Dunford, H. B., and Hsuanyu, Y. (1999) Biochem. Cell Biol., 77, 449–457.PubMedCrossRefGoogle Scholar
  13. 13.
    Hsuanyu, Y., and Dunford, H. B. (1999) Arch. Biochem. Biophys., 368, 413–420.PubMedCrossRefGoogle Scholar
  14. 14.
    Zhang, R., Brennan, M. L., Shen, Z., MacPherson, J. C., Schmitt, D., Molenda, C. E., and Hazen, S. L. (2002) J. Biol. Chem., 277, 46116–46122.PubMedCrossRefGoogle Scholar
  15. 15.
    Goldman, R., Bors, W., Michel, C., Day, B. W., and Kagan, V. E. (1997) Environ. Nutr. Interact., 1, 97–118.Google Scholar
  16. 16.
    Abu-Soud, H. M., and Hazen, S. L. (2000) J. Biol. Chem., 275, 37524–37532.PubMedCrossRefGoogle Scholar
  17. 17.
    Eiserich, J. P., Hristova, M., Cross, C. E., Jones, A. D., Freeman, B. A., Halliwell, B., and van der Vliet, A. (1998) Nature, 391, 393–397.PubMedCrossRefGoogle Scholar
  18. 18.
    But, P. G., Murav’ev, R. A., Fomina, V. A., and Rogovin, V. V. (2004) Izvestiya AN. Ser. Biol., 3, 269–273.Google Scholar
  19. 19.
    Miller, V. P., Goodin, D. B., Friedman, A. E., Hartmann, C., and Ortiz de Montellano, P. R. (1995) J. Biol. Chem., 270, 18413–18419.PubMedCrossRefGoogle Scholar
  20. 20.
    Hawkins, C. L., Brown, B. E., and Davies, M. J. (2001) Arch. Biochem. Biophys., 393, 137–145.CrossRefGoogle Scholar
  21. 21.
    But, P. G., Murav’ev, R. A., Fomina, V. A., and Rogovin, V. V. (2002) Izvestiya AN. Ser. Biol., 3, 266–270.Google Scholar
  22. 22.
    Panasenko, O. M., Arnhold, Yu., and Sergienko, V. I. (2002) Biol. Membr. (Moscow), 19, 403–434.Google Scholar
  23. 23.
    Kumar, K., and Margerum, D. W. (1987) Inorg. Chem., 26, 2706–2711.CrossRefGoogle Scholar
  24. 24.
    Boyum, A. (1964) Nature, 204, 793–794.PubMedGoogle Scholar
  25. 25.
    Bakkenist, A. R. J., Wever, R., Vulsma, T., Plat, H., and van Gelder, B. F. (1973) Biochim. Biophys. Acta, 524, 45–54.Google Scholar
  26. 26.
    Scopes, R. (1985) Protein Purification Techniques [Russian translation], Mir, MoscowGoogle Scholar
  27. 27.
    Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randall, R. J. (1951) J. Biol. Chem., 193, 265–275.PubMedGoogle Scholar
  28. 28.
    Klebanoff, S. J., Waltersdorph, A. M., and Rosen, H. (1984) Meth. Enzymol., 105, 399–403.PubMedGoogle Scholar
  29. 29.
    Capeillere-Blandin, C. (1998) Biochem. J., 336, 395–404.PubMedGoogle Scholar
  30. 30.
    Kettle, A. J., and Winterbourn, C. C. (1994) Meth. Enzymol., 233, 502–512.PubMedGoogle Scholar
  31. 31.
    Kettle, A. J., and Winterbourn, C. C. (1998) Biochim. Biophys. Acta, 957, 185–191.Google Scholar
  32. 32.
    Jerlich, A., Tschabuschnig, S., Fabjan, J. S., and Schaur, R. J. (2000) Int. J. Clin. Lab. Res., 30, 33–37.PubMedCrossRefGoogle Scholar
  33. 33.
    Carr, A. C., Decker, E. A., Park, Y., and Frei, B. (2001) Free Rad. Biol. Med., 31, 62–72.PubMedCrossRefGoogle Scholar
  34. 34.
    Panasenko, O. M., Spalteholz, H., Schiller, J., and Arnhold, J. (2003) Free Rad. Biol. Med., 34, 553–562.PubMedCrossRefGoogle Scholar
  35. 35.
    Panasenko, O. M., Spalteholz, H., Schiller, J., and Arnhold, Yu. (2004) Biol. Membr. (Moscow), 21, 138–150.Google Scholar
  36. 36.
    Spalteholz, H., Panasenko, O. M., and Arnhold, J. (2006) Arch. Biochem. Biophys., 445, 225–234.PubMedCrossRefGoogle Scholar
  37. 37.
    Panasenko, O. M., Briviba, K., Klotz, L. O., and Sies, H. (1997) Arch. Biochem. Biophys., 343, 254–259.PubMedCrossRefGoogle Scholar
  38. 38.
    Marcinkiewicz, J., Chain, B., Nowak, B., Grabowska, A., Bryniarski, K., and Baran, J. (2000) Inflamm. Res., 49, 280–289.PubMedCrossRefGoogle Scholar
  39. 39.
    Hazen, S. L., Hsu, F. F., Duffin, K., and Heinecke, J. W. (1996) J. Biol. Chem., 271, 23080–23088.PubMedCrossRefGoogle Scholar
  40. 40.
    Henderson, J. P., Byun, J., and Heinecke, J. W. (1999) J. Biol. Chem., 274, 33440–33448.PubMedCrossRefGoogle Scholar
  41. 41.
    Carr, A. C., Myzak, M. C., Stocker, R., McCall, M. R., and Frei, B. (2000) FEBS Lett., 487, 176–180.PubMedCrossRefGoogle Scholar
  42. 42.
    Hoy, A., Tregouet, D., Leininger-Muller, B., Poirier, O., Maurice, M., Sass, C., Siest, G., Tiret, L., and Visvikis, S. (2001) Eur. J. Hum. Genet., 9, 780–786.PubMedCrossRefGoogle Scholar
  43. 43.
    Pattison, D. I., and Davies, M. J. (2001) Chem. Res. Toxicol., 14, 1453–1464.PubMedCrossRefGoogle Scholar
  44. 44.
    Fiedler, T. J., Davey, C. A., and Fenna, R. E. (2000) J. Biol. Chem., 275, 11964–11971.PubMedCrossRefGoogle Scholar
  45. 45.
    Johansson, M. W., Patarroyo, M., Oberg, F., Siegbahn, A., and Nilsson, K. (1997) J. Cell Sci., 110, 1133–1139.PubMedGoogle Scholar
  46. 46.
    Chen, J. W., Pham, W., Weissleder, R., and Bogdanov, A., Jr. (2004) Magn. Reson. Med., 52, 1021–1028.PubMedCrossRefGoogle Scholar
  47. 47.
    Huang, L., Wojciechowski, G., and Ortiz de Montellano, P. R. (2005) J. Am. Chem. Soc., 127, 5345–5353.PubMedCrossRefGoogle Scholar
  48. 48.
    Arnhold, J., Osipov, A. N., Spalteholz, H., Panasenko, O. M., and Schiller, J. (2001) Free Rad. Biol. Med., 31, 1111–1119.PubMedCrossRefGoogle Scholar
  49. 49.
    Arnhold, J., Osipov, A. N., Spalteholz, H., Panasenko, O. M., and Schiller, J. (2002) Biochim. Biophys. Acta, 1572, 91–100.PubMedGoogle Scholar
  50. 50.
    Spalteholz, H., Wenske, K., Panasenko, O. M., Schiller, J., and Arnhold, J. (2004) Chem. Phys. Lipids, 129, 85–96.PubMedCrossRefGoogle Scholar
  51. 51.
    Daugherty, A., Dunn, J. L., Rateri, D. L., and Heinecke, J. W. (1994) J. Clin. Invest., 94, 437–444.PubMedCrossRefGoogle Scholar
  52. 52.
    Zhang, R., Brennan, M.-L., Fu, X., Aviles, R. J., Pearce, G. L., Penn, M. S., Topol, E. J., Sprecher, D. L., and Hazen, S. L. (2001) J. Am. Med. Assoc., 286, 2136–2142.CrossRefGoogle Scholar
  53. 53.
    Clynes, R., Maizes, J. S., Guinamard, R., Ono, M., Takai, T., and Ravetch, J. V. (1999) J. Exp. Med., 189, 179–185.PubMedCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2006

Authors and Affiliations

  • I. I. Vlasova
    • 1
    Email author
  • J. Arnhold
    • 2
  • A. N. Osipov
    • 3
  • O. M. Panasenko
    • 1
  1. 1.Research Institute of Physico-Chemical MedicineMoscowRussia
  2. 2.Institute of Medical Physics and BiophysicsUniversity of LeipzigLeipzigGermany
  3. 3.Russian State Medical UniversityMoscowRussia

Personalised recommendations